Shape-Controllable Pulse Electrodeposition of Ultrafine Platinum Nanodendrites for Methanol Catalytic Combustion and the Investigation of their Local Electric Field Intensification by Electrostatic Force Microscope and Finite Element Method

2014 ◽  
Vol 136 ◽  
pp. 66-74 ◽  
Author(s):  
Jun Liu ◽  
Xiaohong Wang ◽  
Zhongjin Lin ◽  
Yi Cao ◽  
ZhangZhang Zheng ◽  
...  
2020 ◽  
Vol 12 ◽  
Author(s):  
Jue Wang ◽  
Tao Ma ◽  
Xu Wang ◽  
Fang Wang

Background: : A THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) is proposed. The waveguide characteristics are investigated by using Finite Element Method (FEM). The influence of the geometric parameters on propagation constants, electric field distributions, effective mode areas, and propagation lengths are obtained numerically. The performance tunability of TPW-GCBN is also studied by adjusting the Fermi energy (FE). The simulation results show that the TPW-GCBN has better mode confinement ability. The TPW-GCBN has potential applications in high density integration of photonic circuit for the future tunable micro nano optoelectronic devices. Surface plasmon polaritons (SPPs) based waveguides have been widely used to enhance the local electric fields. It also has the capability of manipulating electromagnetic fields on the deep-subwavelength. Objective:: The waveguide characteristics of a THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) should be investigated. The tunability of TPW-GCBN should be studied by adjusting the chemical potential (FE) which can be changed by the voltage. Method: : The mode analysis and parameter sweep in Finite Element Method (FEM) were used to simulate the TPW-GCBN for analyzing effective refractive index (neff), electric field distributions, normalized mode areas (Am), propagation length (Lp) and figure of merit (FoM). Results: : At 5 THz, Aeff of λ2/14812, Lp of ~2 μm and FoM of 25 can be achieved. The simulation results show that the TPW-GBN has good mode confinement ability and flexible tunability. Conclusion:: The TPW-GBN provides a new freedom to manipulate the graphene surface plasmons, and leads to new applications in high density integration of photonic circuit for tunable integrated optical devices.


2011 ◽  
Vol 695 ◽  
pp. 513-516
Author(s):  
Jie Ren ◽  
Li Fu ◽  
Ling Bao Meng

The CdZnTe (CZT) devices with various screening depth in dimensions 3×3×6mm3 were fabricated. The influence of Ring length (screening depth) and length of crystal on the electric field distribution in CZT devices has been explored by finite element method. The results indicated that ring length (screening depth) plays an important role on the detecting performance of CZT Frisch-ring devices. Longer screening depth gives rise to an electric field which is compressed more greatly. Measured spectra indicated that extreme compressed electric field could reduce detecting resolution. A FWHM energy resolution of approximately 3.71% at 662 keV was obtained for a device with dimensions 3×3×6mm3 and 4.8mm screening depth.


Sign in / Sign up

Export Citation Format

Share Document