electric field distribution
Recently Published Documents


TOTAL DOCUMENTS

1141
(FIVE YEARS 295)

H-INDEX

36
(FIVE YEARS 5)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 39
Author(s):  
Feng Tang ◽  
Qingzhi Li ◽  
Haichao Yu ◽  
Zao Yi ◽  
Xin Ye

Background: Optical components with high damage thresholds are very desirable in intense-light systems. Metalenses, being composed of phase-control nanostructures with peculiar properties, are one of the important component candidates in future optical systems. However, the optothermal mechanism in metalenses is still not investigated adequately. Methods: In this study, the optothermal absorption in transmissive metalenses made of silicon nanobricks and nanoholes is investigated comparatively to address this issue. Results: The geometrical dependencies of nanostructures’ transmittance, phase difference, and field distribution are calculated numerically via simulations. To demonstrate the optothermal mechanism in metalenses, the mean absorption efficiencies of the selected unit-cells, which would constitute metalenses, are analyzed. The results show that the electric field in the silicon zone would lead to an obvious thermal effect, and the enhancement of the localized electric field also results in the strong absorption of optical energy. Then, two typical metalenses are designed based on these nanobricks and nanoholes. The optothermal simulations show that the nanobrick-based metalens can handle a power density of 0.15 W/µm2, and the density of the nanohole-based design is 0.12 W/µm2. Conclusions: The study analyzes and compares the optothermal absorption in nanobricks and nanoholes, which shows that the electric-field distribution in absorbent materials and the localized-field enhancement are the two key effects that lead to optothermal absorption. This study provides an approach to improve the anti-damage potentials of transmissive metalenses for intense-light systems.


2022 ◽  
Vol 571 ◽  
pp. 151251
Author(s):  
Yuhui Zhang ◽  
Yanzhi Wang ◽  
Hongbo He ◽  
Ruiyi Chen ◽  
Zhihao Wang ◽  
...  

Author(s):  
Antonio Cerdeira ◽  
Magali Estrada ◽  
Marcelo Antonio Pavanello

Abstract In this paper, 3D TCAD simulations are used to show that the electron concentration, current density, and electric field distribution from the interface at the lateral channels and from the top channel to the centre of the silicon wire, in Nanowire and Nanosheet structures, are practically same. This characteristic makes possible to consider that the total channel width for these structures is equal to the perimeter of the transistor sheet, allowing to extend the application of the Symmetric Doped Double-Gate Model (SDDGM) model to Nanowires and Nanosheets MOSFETs, with no need to include new parameters. The Model SDDGM is validated for this application using several measured and simulated structures of Nanowires and Nanosheets transistors, with different aspect ratios of fin width and fin height, showing very good agreement between measured or simulated characteristics and modelled. SDDGM is encoded in Verilog-A language and implemented in SmartSPICE circuit simulator.


2021 ◽  
Vol 11 (6) ◽  
pp. 7887-7891
Author(s):  
K. L. Wong ◽  
M. Danikas

Functionally Graded Materials (FGMs) present a solution to control electrical stresses in high voltage applications. In this paper, a concise review is presented on the FGMs for spacers in gas-insulated systems. FGMs offer the possibility of a more even electric field distribution and thus a viable solution for industrial applications. FGMs are investigated here primarily as materials for permittivity control. Some aspects of FGMs are discussed as well as some thoughts on future challenges.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012031
Author(s):  
Anis Akilah Binti Ameer Ali ◽  
Hafisoh Ahmad ◽  
Hoon Yap ◽  
Hafizul Azizi Bin Ismail

Abstract Past research has reported the challenges regarding on degradation and aging due to high localization of electric field at triple point areas of polymeric insulator. The different materials and designs of polymeric insulator have initiated the partial discharge and arching activities which eventually lead to the insulation failures. The compounding of nanomaterials in the polymer shows a promising result to overcome this problem by redistributing the uniformity of electrical field lines on the insulator. In the present work, ethylene-propylene-diene rubber (EPDM) and titanium dioxide (TiO2) is introduced as nano composites that been embedded into insulator’s housing made of 1) silicone rubber (SiR) and 2) Ethylene Propylene Diene Monomer (EPDM) Rubber. Titanium dioxide (TiO2) is a semiconductor material that can be formed in different sizes either micron or nano-sized filler and has high relative permittivity that be able to reduce the high electrical stresses on high voltage equipment. Meanwhile EPDM shows good mechanical profile, excellent resistance properties and low cost. Therefore, it brings to the new opportunity to fabricate the nanocomposite based on both materials which exhibits an improved electrical properties and good distribution of electric field on polymeric outdoor insulators. In depth investigation was carried out to analyze the effect of different nano-filler loading in the compound and behavior of nanocomposites at different polymer base. An 11kV polymeric insulator is modelled to be simulated by using COMSOL Multiphysics software under dry-clean surface conditions to investigate the electric field distribution at terminal ends and along the insulator creepage path. The Electrostatics interface from the AC/DC Module is used in the evaluation of electric field distribution of insulator model correspondingly with the variations in filler percentage in the host matrix.


2021 ◽  
Vol 2135 (1) ◽  
pp. 012006
Author(s):  
A F Cadena ◽  
J S Mendoza ◽  
H F Ibáñez

Abstract The transmission lines installed in our city, to the outskirts of it and in the rest of the national territory produce a level of emissions of electric field, these levels vary depending on the physical disposition of the drivers, the distance between spans, the voltage level of the line, among others. These values must respect the exposure limits for individuals, as stipulated in Article 14 of RETIE. In this work will be developed a study of distribution of the electric field along a chain of insulators standard of tempered glass of a transmission line of 115 kV with the aid of the software COMSOL Multiphysics, to the impact of an atmospheric discharge on the storage cable with the help of ATPDraw software, taking into account variations in the value of the earthing resistance of the structure. With the electric field distribution values obtained by means of simulations carried out in the COMSOL Multiphysics software, comparisons are made of the magnitude of the obtained field, taking as a reference the stable state of the system without condition of pollutants. Initially a simulation of a transmission line of 115 kV is performed in the ATPDraw software, analyzing the lightning impulse generated on the guard cable, at different values of grounding resistance, to determine the waveform and reached value of overvoltage in the insulator chain. Then the overvoltage signal obtained with the help of ATPDraw software is recreated in the COMSOL Multiphysics software, to be able to visualize the distribution and behavior of the electric field along the chain, taking into account the different factors involved in the process, pollutants such as salinity, themes such as travelling waves etc. and thus determine possible line isolation failures by comparing the values achieved by simulating in COMSOL Multiphysics with respect to the CFO of the insulator chain.


2021 ◽  
Author(s):  
Jiang Yueling ◽  
Dong Quanlin

Abstract In electron beam technology, the critical focus of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in a simulation, obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7889
Author(s):  
Xiaolong Li ◽  
Mingde Wan ◽  
Shouyi Yan ◽  
Xin Lin

The temperature properties of real-type direct-current gas-insulated transmission lines (DC-GIL) with a basin-type spacer were investigated by the finite element method in this paper. A horizontally installed model was established and the temperature distribution was obtained with a 3D model. The specific heat capacity and thermal conductivity of the spacer were measured and applied in the simulation. The results show that the temperature of the convex surface was slightly higher than that of the concave surface. With an increase in the SF6 pressure, the temperature of the spacer decreased, which can be attributed to the improvement of convection due to increases in the heat capacity per unit volume. With an increase in the ambient temperature, the temperature of the spacer increased linearly. The temperature difference between the inner and outer parts of the spacer increased with increases in the load current. Besides, an obvious increase in the surface electric field strength appeared under the influence of the thermal gradient compared to the results without the thermal gradient. Thus, special attention should be paid to the insulation properties of the spacer considering the influence of temperature distribution. This study evaluates both the thermal and insulation characteristics of the GIL along with the spacer under various conditions.


Sign in / Sign up

Export Citation Format

Share Document