scholarly journals Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors

2018 ◽  
Vol 283 ◽  
pp. 882-893 ◽  
Author(s):  
Boris Dyatkin ◽  
Naresh C. Osti ◽  
Alejandro Gallegos ◽  
Yu Zhang ◽  
Eugene Mamontov ◽  
...  
2018 ◽  
Vol 395 ◽  
pp. 271-279 ◽  
Author(s):  
Jocelyn E. Zuliani ◽  
Shitang Tong ◽  
Charles Q. Jia ◽  
Donald W. Kirk

2015 ◽  
Vol 7 (42) ◽  
pp. 23515-23520 ◽  
Author(s):  
Ying Liu ◽  
Jinyuan Zhou ◽  
Lulu Chen ◽  
Peng Zhang ◽  
Wenbin Fu ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Aibing Chen ◽  
Xinyu Fu ◽  
Lei Liu ◽  
Wei Wang ◽  
Yifeng Yu ◽  
...  

2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


2009 ◽  
Vol 24 (2) ◽  
pp. 320-324 ◽  
Author(s):  
Wei XIE ◽  
Hai-Feng CHENG ◽  
Zeng-Yong CHU ◽  
Zhao-Hui CHEN ◽  
Yong-Jiang ZHOU

Sign in / Sign up

Export Citation Format

Share Document