Interfacial properties and Li-ion dynamics between Li3OCl solid electrolyte and Li metal anode for all solid state Li metal batteries from first principles study

2020 ◽  
Vol 334 ◽  
pp. 135622
Author(s):  
M.S. Wu ◽  
B. Xu ◽  
W.W. Luo ◽  
B.Z. Sun ◽  
C.Y. Ouyang
2016 ◽  
Vol 4 (9) ◽  
pp. 3253-3266 ◽  
Author(s):  
Yizhou Zhu ◽  
Xingfeng He ◽  
Yifei Mo

This study provides the understanding and design strategy of solid electrolyte–electrode interfaces to improve electrochemical performance of all-solid-state Li-ion batteries.


Author(s):  
Xiangyu Meng ◽  
Yuzhao Liu ◽  
Zhiyu Wang ◽  
Yizhou Zhang ◽  
Xingyu Wang ◽  
...  

Recent years have witnessed a thriving pursuit of high-energy Li metal batteries for replacing existing Li-ion batteries. However, the cell chemistry involving extremely reactive Li metal anode in flammable organic...


2016 ◽  
Vol 113 (47) ◽  
pp. 13313-13317 ◽  
Author(s):  
Yutao Li ◽  
Weidong Zhou ◽  
Xi Chen ◽  
Xujie Lü ◽  
Zhiming Cui ◽  
...  

A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life.


Author(s):  
Seonggyu Cho ◽  
Shinho Kim ◽  
Wonho Kim ◽  
Seok Kim ◽  
Sungsook Ahn

Considering the safety issues of Li ion batteries, all-solid-state polymer electrolyte has been one of the promising solutions. In this point, achieving a Li ion conductivity in the solid state electrolytes comparable to liquid electrolytes (>1 mS/cm) is particularly challenging. Employment of polyethylene oxide (PEO) solid electrolyte has not been not enough in this point due to high crystallinity. In this study, hybrid solid electrolyte (HSE) systems are designed with Li1.3Al0.3Ti0.7(PO4)3(LATP), PEO and Lithium hexafluorophosphate (LiPF6) or Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Hybrid solid cathode (HSC) is also designed using LATP, PEO and lithium cobalt oxide (LiCoO2, LCO)—lithium manganese oxide (LiMn2O4, LMO). The designed HSE system displays 3.0 × 10−4 S/cm (55 ℃) and 1.8 × 10−3 S/cm (23 ℃) with an electrochemical stability as of 6.0 V without any separation layer introduction. Li metal (anode)/HSE/HSC cell in this study displays initial charge capacity as of 123.4/102.7 mAh/g (55 ℃) and 73/57 mAh/g (25 °C). To these systems, Succinonitrile (SN) has been incorporated as a plasticizer for practical secondary Li ion battery system development to enhance ionic conductivity. The incorporated SN effectively increases the ionic conductivity without any leakage and short-circuits even under broken cell condition. The developed system also overcomes the typical disadvantages of internal resistance induced by Ti ion reduction. In this study, optimized ionic conductivity and low internal resistance inside the Li ion battery cell have been obtained, which suggests a new possibility in the secondary Li ion battery development.


Sign in / Sign up

Export Citation Format

Share Document