rechargeable cell
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Minghao Xie ◽  
Shuting Kong ◽  
Linghao Su
Keyword(s):  

2021 ◽  
pp. 2103148
Author(s):  
Tan N. Nguyen ◽  
Bahar Iranpour ◽  
Evan Cheng ◽  
John D. W. Madden
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Hongyang Li ◽  
Daoqing Su ◽  
Yijie Lai ◽  
Xinmeng Xu ◽  
Chencheng Zhang ◽  
...  

Background: Deep brain stimulation (DBS) is a well-established treatment for a variety of movement disorders. Rechargeable cell technology was introduced to pulse generator more than 10 years ago and brought great benefits to patients. However, with the widespread use of rechargeable implanted pulse generators (r-IPGs), a new hardware complication, when charging the r-IPG has been difficult, was encountered.Objective: The aims of this study were to report five cases confronted with r-IPG charging difficulty postoperatively and to explore the predisposing factors and treatment strategies for this rare complication.Methods: We retrospectively reviewed our DBS patient database for those who were implanted with r-IPGs. From 2012, we identified a total of 1,226 patients, with five of them experiencing charging difficulties after surgery. Detailed patient profiles and clinical procedures were scrutinized and reviewed.Results: All the charging problems were resolved by reoperation. Cases 1 and 2 required their r-IPGs to be anchored to the muscle and fascia. Cases 3 and 4 had their r-IPGs inserted in the wrong orientation at the initial surgery, which was resolved by turning around the r-IPGs at the revision surgery. Case 5, in which we propose that the thick subcutaneous fat layer blocked the connection between the r-IPG and the recharger, required a second operation to reposition the r-IPG in a shallow layer underneath the skin. For all cases, the charging problems were resolved without reoccurrences to date.Conclusion: Our case series indicates a novel hardware complication of DBS surgery, which had been rarely reported before. In this preliminary study, we describe several underlying causes of this complication and treatment methods.


Author(s):  
Xiangyu Meng ◽  
Yuzhao Liu ◽  
Zhiyu Wang ◽  
Yizhou Zhang ◽  
Xingyu Wang ◽  
...  

Recent years have witnessed a thriving pursuit of high-energy Li metal batteries for replacing existing Li-ion batteries. However, the cell chemistry involving extremely reactive Li metal anode in flammable organic...


2019 ◽  
Vol 116 (38) ◽  
pp. 18783-18789 ◽  
Author(s):  
Konstantin Romanenko ◽  
Alexej Jerschow

Safety risks associated with modern high energy-dense rechargeable cells highlight the need for advanced battery screening technologies. A common rechargeable cell exposed to a uniform magnetic field creates a characteristic field perturbation due to the inherent magnetism of electrochemical materials. The perturbation pattern depends on the design, state of charge, accumulated mechanical defects, and manufacturing flaws of the device. The quantification of the induced magnetic field with MRI provides a basis for noninvasive battery diagnostics. MRI distortions and rapid signal decay are the main challenges associated with strongly magnetic components present in most commercial cells. These can be avoided by using Single-Point Ramped Imaging with T1 enhancement (SPRITE). The method is immune to image artifacts arising from strong background gradients and eddy currents. Due to its superior image quality, SPRITE is highly sensitive to defects and the state of charge distribution in commercial Li-ion cells.


2019 ◽  
Vol 2 (7) ◽  
pp. 4943-4953 ◽  
Author(s):  
M. H. Braga ◽  
A. J. Murchison ◽  
J. E. Oliveira ◽  
J. B. Goodenough

Sign in / Sign up

Export Citation Format

Share Document