scholarly journals A New All-Solid-State Lithium-Ion Battery Working without a Separator in an Electrolyte

Author(s):  
Seonggyu Cho ◽  
Shinho Kim ◽  
Wonho Kim ◽  
Seok Kim ◽  
Sungsook Ahn

Considering the safety issues of Li ion batteries, all-solid-state polymer electrolyte has been one of the promising solutions. In this point, achieving a Li ion conductivity in the solid state electrolytes comparable to liquid electrolytes (>1 mS/cm) is particularly challenging. Employment of polyethylene oxide (PEO) solid electrolyte has not been not enough in this point due to high crystallinity. In this study, hybrid solid electrolyte (HSE) systems are designed with Li1.3Al0.3Ti0.7(PO4)3(LATP), PEO and Lithium hexafluorophosphate (LiPF6) or Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Hybrid solid cathode (HSC) is also designed using LATP, PEO and lithium cobalt oxide (LiCoO2, LCO)—lithium manganese oxide (LiMn2O4, LMO). The designed HSE system displays 3.0 × 10−4 S/cm (55 ℃) and 1.8 × 10−3 S/cm (23 ℃) with an electrochemical stability as of 6.0 V without any separation layer introduction. Li metal (anode)/HSE/HSC cell in this study displays initial charge capacity as of 123.4/102.7 mAh/g (55 ℃) and 73/57 mAh/g (25 °C). To these systems, Succinonitrile (SN) has been incorporated as a plasticizer for practical secondary Li ion battery system development to enhance ionic conductivity. The incorporated SN effectively increases the ionic conductivity without any leakage and short-circuits even under broken cell condition. The developed system also overcomes the typical disadvantages of internal resistance induced by Ti ion reduction. In this study, optimized ionic conductivity and low internal resistance inside the Li ion battery cell have been obtained, which suggests a new possibility in the secondary Li ion battery development.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1364 ◽  
Author(s):  
Seonggyu Cho ◽  
Shinho Kim ◽  
Wonho Kim ◽  
Seok Kim ◽  
Sungsook Ahn

Considering the safety issues of Li ion batteries, an all-solid-state polymer electrolyte has been one of the promising solutions. Achieving a Li ion conductivity of a solid-state electrolyte comparable to that of a liquid electrolyte (>1 mS/cm) is particularly challenging. Even with characteristic ion conductivity, employment of a polyethylene oxide (PEO) solid electrolyte has not been sufficient due to high crystallinity. In this study, hybrid solid electrolyte (HSE) systems have been designed with Li1.3Al0.3Ti0.7(PO4)3 (LATP), PEO and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). A hybrid solid cathode (HSC) is also designed using LATP, PEO and lithium cobalt oxide (LiCoO2, LCO)—lithium manganese oxide (LiMn2O4, LMO). The designed HSE system has 2.0 × 10−4 S/cm (23 °C) and 1.6 × 10−3 S/cm (55 °C) with a 6.0 V electrochemical stability without an additional separator membrane introduction. In these systems, succinonitrile (SN) has been incorporated as a plasticizer to reduce crystallinity of PEO for practical all-solid Li battery system development. The designed HSC/HSE/Li metal cell in this study operates without any leakage and short-circuits even under the broken cell condition. The designed HSC/HSE/Li metal cell in this study displays an initial charge capacity of 82/62 mAh/g (23 °C) and 123.4/102.7 mAh/g (55 °C). The developed system overcomes typical disadvantages of internal resistance induced by Ti ion reduction. This study contributes to a new technology development of all-solid-state Li battery for commercial product design.


2018 ◽  
Vol 9 ◽  
pp. 1623-1628 ◽  
Author(s):  
Jonathan Op de Beeck ◽  
Nouha Labyedh ◽  
Alfonso Sepúlveda ◽  
Valentina Spampinato ◽  
Alexis Franquet ◽  
...  

The continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction. For example, in the case of cathode materials, structural, electrical and chemical information must be probed at the nanoscale and in the same area, to identify the ionic processes occurring inside each individual layer and understand the impact on the entire battery cell. In this work, we pursue this objective by using two well established nanoscale analysis techniques namely conductive atomic force microscopy (C-AFM) and secondary ion mass spectrometry (SIMS). We present a platform to study Li-ion composites with nanometer resolution that allows one to sense a multitude of key characteristics including structural, electrical and chemical information. First, we demonstrate the capability of a biased AFM tip to perform field-induced ionic migration in thin (cathode) films and its diagnosis through the observation of the local resistance change. The latter is ascribed to the internal rearrangement of Li-ions under the effect of a strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is indicated.


Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


2020 ◽  
Vol 4 (4) ◽  
pp. 1164-1173 ◽  
Author(s):  
Zhen Li ◽  
Zhi-Wei Liu ◽  
Zhen-Jie Mu ◽  
Chen Cao ◽  
Zeyu Li ◽  
...  

Two new imidazolium-based cationic COFs were synthesized and employed as all-solid electrolytes, and exhibited high lithium ion conductivity at high temperature. The assembled Li-ion battery displays preferable battery performance at 353 K.


2016 ◽  
Vol 113 (47) ◽  
pp. 13313-13317 ◽  
Author(s):  
Yutao Li ◽  
Weidong Zhou ◽  
Xi Chen ◽  
Xujie Lü ◽  
Zhiming Cui ◽  
...  

A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Revannath Dnyandeo Nikam ◽  
Myonghoon Kwak ◽  
Jongwon Lee ◽  
Krishn Gopal Rajput ◽  
Writam Banerjee ◽  
...  

AbstractAll solid-state lithium-ion transistors are considered as promising synaptic devices for building artificial neural networks for neuromorphic computing. However, the slow ionic conduction in existing electrolytes hinders the performance of lithium-ion-based synaptic transistors. In this study, we systematically explore the influence of ionic conductivity of electrolytes on the synaptic performance of ionic transistors. Isovalent chalcogenide substitution such as Se in Li3PO4 significantly reduces the activation energy for Li ion migration from 0.35 to 0.253 eV, leading to a fast ionic conduction. This high ionic conductivity allows linear conductance switching in the LiCoO2 channel with several discrete nonvolatile states and good retention for both potentiation and depression steps. Consequently, optimized devices demonstrate the smallest nonlinearity ratio of 0.12 and high on/off ratio of 19. However, Li3PO4 electrolyte (with lower ionic conductivity) shows asymmetric and nonlinear weight-update characteristics. Our findings show that the facilitation of Li ionic conduction in solid-state electrolyte suggests potential application in artificial synapse device development.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 408
Author(s):  
Katja Waetzig ◽  
Christian Heubner ◽  
Mihails Kusnezoff

All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy density. The solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) provides high Li-ion conductivity of about 10−3 S/cm and is considered a highly promising candidate for both the solid electrolyte-separator and the ionically conductive part of the all-solid state composite cathode, consisting of the cathode material, the solid electrolyte, and an electron conductor. Co-sintering of the composite cathode is a sophisticated challenge, because temperatures above 1000 °C are typically required to achieve the maximum ionic conductivity of LATP but provoke reactions with the cathode material, inhibiting proper electrochemical functioning in the ASSB. In the present study, the application of sintering aids with different melting points and their impact on the sinterability and the conductivity of LATP were investigated by means of optical dilatometry and impedance spectroscopy. The microstructure of the samples was analyzed by SEM. The results indicate that the sintering temperature can be reduced below 800 °C while maintaining high ionic conductivity of up to 3.6 × 10−4 S/cm. These insights can be considered a crucial step forward towards enable LATP-based composite cathodes for future ASSB.


2017 ◽  
Vol 15 ◽  
pp. 83-91 ◽  
Author(s):  
Fida Saidani ◽  
Franz X. Hutter ◽  
Rares-George Scurtu ◽  
Wolfgang Braunwarth ◽  
Joachim N. Burghartz

Abstract. In this work, various Lithium-ion (Li-ion) battery models are evaluated according to their accuracy, complexity and physical interpretability. An initial classification into physical, empirical and abstract models is introduced. Also known as white, black and grey boxes, respectively, the nature and characteristics of these model types are compared. Since the Li-ion battery cell is a thermo-electro-chemical system, the models are either in the thermal or in the electrochemical state-space. Physical models attempt to capture key features of the physical process inside the cell. Empirical models describe the system with empirical parameters offering poor analytical, whereas abstract models provide an alternative representation. In addition, a model selection guideline is proposed based on applications and design requirements. A complex model with a detailed analytical insight is of use for battery designers but impractical for real-time applications and in situ diagnosis. In automotive applications, an abstract model reproducing the battery behavior in an equivalent but more practical form, mainly as an equivalent circuit diagram, is recommended for the purpose of battery management. As a general rule, a trade-off should be reached between the high fidelity and the computational feasibility. Especially if the model is embedded in a real-time monitoring unit such as a microprocessor or a FPGA, the calculation time and memory requirements rise dramatically with a higher number of parameters. Moreover, examples of equivalent circuit models of Lithium-ion batteries are covered. Equivalent circuit topologies are introduced and compared according to the previously introduced criteria. An experimental sequence to model a 20 Ah cell is presented and the results are used for the purposes of powerline communication.


Sign in / Sign up

Export Citation Format

Share Document