internal resistance
Recently Published Documents


TOTAL DOCUMENTS

778
(FIVE YEARS 279)

H-INDEX

34
(FIVE YEARS 7)

Author(s):  
Yufa Zhou ◽  
Jingsen Zhang ◽  
Guangqing Xia ◽  
Yue Hua ◽  
Yanqin Li ◽  
...  

Abstract In this work, N-doped graphite oxide (GO-P) was prepared by cold plasma treatment of GO using a mixture of NH3 and Ar as the working gas. When the ratios of NH3:Ar were 1:2, 1:3, and 1:4, the specific capacitances of the GO-P(NH3:Ar1:2), GO-P(NH3:Ar1:3), and GO-P(NH3:Ar1:4) were 124.5, 187.7, and 134.6 Fg−1, respectively, which were 4.7, 7.1, and 5.1 times that of GO at the current density of 1 Ag−1. The capacitance retention of the GO-P(NH3:Ar1:3) was 80% when it was cycled 1000 times. The characterization results showed that the NH3 cold plasma could effectively produce N-doped GO and generate more active defects. The N/C ratio and the contents of pyridinic nitrogen and graphitic nitrogen of the GO-P(NH3:Ar1:3) were the highest. These were conducive to providing pseudocapacitance and reducing the internal resistance of the electrode. In addition, the ID/IG of the GO-P(NH3:Ar=1:3) (1.088) was also the highest, indicating the highest number of defects. The results of discharge parameters measurement and in situ optical emission spectroscopy diagnosis of NH3 plasma showed that the discharge is the strongest when the ratio of NH3:Ar was 1:3, thereby the generated nitrogen active species can effectively promote N-doping. The N-doping and abundant defects were the keys to the excellent electrochemical performance of the GO-P(NH3:Ar1:3). NH3 cold plasma is a simple and rapid method to prepare N-doped GO and regulate the N-doping to prepare high-performance supercapacitors.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 355
Author(s):  
Georgia Balkourani ◽  
Theodoros Damartzis ◽  
Angeliki Brouzgou ◽  
Panagiotis Tsiakaras

The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts’ synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.


2022 ◽  
Vol 960 (1) ◽  
pp. 012002
Author(s):  
I G Bratu ◽  
R F Ene ◽  
M Vulpe ◽  
F Uleanu ◽  
D Giosanu

Abstract The performance of PEM fuel cells is influenced by several factors such as: the operating temperature of the cell, the reactant gas flow, work pressures, the reaction gas humidity. In the present work we aimed to identify the optimal values of these parameters for operation of a PEM cell to achieve maximum power in conditions of high efficiency; the technological possibilities of its use in a portable energy application have been evaluated. Experimental measurements regarding the integrating polymeric membrane in three different fuel cell construction designed were performed. The influence of the mechanical compression of the GDL diffusion layer on the total internal resistance of the cell was achieved by comparative analysis of the polarization curves. It was found that as the deformation level of the MEA increases, the power generated by the battery increases progressively. The resulting experimental data subsequently allowed the design and implementation of a PEM fuel cell assembly, fully functional at power level, corresponding to the number of constituent elements.


2022 ◽  
Vol 334 ◽  
pp. 08001
Author(s):  
Grégory Bataillou ◽  
Naoufel Haddour ◽  
Christian Vollaire

Plant Microbial Fuel Cell (PMFC) creates electricity from oxidation of root exudates by microbia anaerobic digestion, and reduction of dioxygen to water. In this study, Lobelia Queen Cardinalis was used as a plant model to investigate the impact of ionic connection between stacked Plant microbial fuel cell (shared soil). 10mm thickness carbon felt woven with stainless steel wire was used for both anode and cathode, and soil was a mix of potting soil and ground from pond banks (30\%-70\% weight, respectively). Independent performances did not show any difference between individual and shared soil PMFCs. Stacking independent PMFC in series sums both open circuit potential (OCP) and internal resistance, while stacking in parallel sums current, keeping open circuit potential to the mean of the OCPs. Although series stacking seems to output best performances, this configuration may cause voltage reversal in one PMFC when current is strong, leading to biofilm damage, so stacking in parallel is recommended.


2022 ◽  
Vol 354 ◽  
pp. 00040
Author(s):  
Marius Darie ◽  
Tiberiu Csaszar ◽  
Adriana Andriș ◽  
Ioana Ciobanu

In paperwork is presented the estimation of the maximum surface temperature of cells exposed to specific tests for the intrinsic safety type of protection. Particularly, it presents the thermal resistance of the short-circuit test-stand results. The first part introduces the aspects regarding the risk of explosion. The risk of explosion occurs due to the presence of technical equipment in areas where flammable substances may occur. The second part itemizes the requirements for the testing of cells. Also, is introduced the stand configuration and performance aspects. The third part of the paper has been dedicated to the presentation and the discussion of the obtained results. The analysis of the test results highlighted the range of thermal resistance. This result could help estimation of the surface temperature of cells based on their capacity and internal resistance. The convection coefficients were determined. The process of deep discharge destroys the inner electrochemical of the cell system. Therefore, it permits energy recovery lower than a fraction of a tenth.


2022 ◽  
Vol 334 ◽  
pp. 08003
Author(s):  
Jakub Dziegielowski ◽  
Gresa Bregu ◽  
Luke Hulse ◽  
Mirella Di Lorenzo

Soil microbial fuel cells (SMFCs) are a sub-class of the microbial fuel cells family, in which the soil acts as the electrolyte, and as the source of microorganisms and organic fuel. Given the great simplicity of the system design, SMFCs show a promising avenue for energy generation in remote areas. In this study, we investigate the influence that geometrical factors, such as the electrode orientation, have on the electrochemical performance of SMFCs. Two types of electrode orientations: horizontal and vertical, were tested. Additionally, the influence of anode and cathode immersion in soil was explored too. Our results demonstrate that vertical positioning of the cathode in soil is not a viable option. The increase in cathodic immersion leads to a more rapid performance decay, attributed to more anaerobic conditions along soil’s depth. The increase in anode immersion has a positive effect on the evolution of the negative electrode potential. However, with the increase in electrode spacing, the performance drops due to a greater internal resistance.


2021 ◽  
Author(s):  
SNEHAMOYEE HAZRA ◽  
Subhamita Sengupta ◽  
Soumyaranjan Ratha ◽  
Ankita Ghatak ◽  
Arup Kumar Raychaudhuri ◽  
...  

Abstract The high internal resistance of the perovskite materials used in Nanogenerators (NGs) lowers the power generation. It severely restricts their application for mechanical energy harvesting from the ambient source. In this work, we demonstrate a flexible Piezoelectric NG (PENG) with an improved device structure. Hydrothermally grown one-dimensional Lead Zirconate Titanate (Pb(ZrTi)O3) of different morphologies are used as the generating material. The morphology of the PZT nanostructures, engineered from nanoparticles to needle-shaped nanowires to increase the surface to volume ratio, provides effective mechanical contact with the electrode. The reduction of the internal resistance of the PENG has been achieved by two ways: i) fabrication of interdigitated electrodes (IDE) to increase the interfacial polarization and ii) lowering of Schottky barrier height (SBH) at the junction of the PZT nanostructure and the metal electrode by varying the electrode materials of different work functions. We find that lowering of the SBH at the interface contributes to an increased piezo voltage generation. The flexible nano needles-based PENG can deliver output voltage 9.5 V and power density 615 μW/cm2 on application low mechanical pressure (~1 kPa) by tapping motion. The internal resistance of the device is ~0.65 MΩ. It can charge a 35 μF super-capacitor up to 5 V within 20 s. This study provides a systematic pathway to solve the bottlenecks in the piezoelectric nanogenerators due to the high internal resistance.


Author(s):  
Md Mehdee Hasan Mahfuz ◽  
Motohiro Tomita ◽  
Kazuaki Katayama ◽  
Tsubasa Kashizaki ◽  
Katsuki Abe ◽  
...  

Abstract A Thermoelectric (TE) generator is expected to play an important role in the operation of tiny-watt capable wireless power supply devices by converting the waste heat energy into electrical energy. This work is the demonstration of planar cavity-free multi-stage n-type unileg- and bileg Si-nanowire (Si-NW) TE generators. The result shows that the output power of the multi-stage bileg-TE generator increases linearly with increasing the stage number, whereas the rate of increase of the multi-stage unileg-TE generator power output tends to decrease as the stage number increases. Although the power of the multi-stage bileg-TE generator fabricated in this work was smaller than that of the multi-stage unileg-TE generator due to the large internal resistance of p-type elements, however, the improved linearity of the bileg-TE generator than the unileg-TE generator indicates the potential advantage of the multi-stage bileg-TE generator for the large-scale integration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pengcheng Yu ◽  
Yu Ye ◽  
Jinlong Zhu ◽  
Wei Xia ◽  
Yusheng Zhao

Solid-state lithium metal batteries have attracted broad interest as a promising energy storage technology because of the high energy density and enhanced safety that are highly desired in the markets of consumer electronics and electric vehicles. However, there are still many challenges before the practical application of the new battery. One of the major challenges is the poor interface between lithium metal electrodes and solid electrolytes, which eventually lead to the exceptionally high internal resistance of the cells and limited output. The interface issue arises largely due to the poor contact between solid and solid, and the mechanical/electrochemical instability of the interface. In this work, an in situ “welding” strategy is developed to address the interfacial issue in solid-state batteries. Microliter-level of liquid electrolyte is transformed into an organic–inorganic composite buffer layer, offering a flexible and stable interface and promoting enhanced electrochemical performance. Symmetric lithium–metal batteries with the new interface demonstrate good cycling performance for 400 h and withstand the current density of 0.4 mA cm−2. Full batteries developed with lithium–metal anode and LiFePO4 cathode also demonstrate significantly improved cycling endurance and capacity retention.


Sign in / Sign up

Export Citation Format

Share Document