The Effect of Lithium Salt concentration in an Aprotic Solvent on the Oxygen Reaction

2021 ◽  
pp. 139073
Author(s):  
N.V. Panchenko ◽  
V.A. Bogdanovskaya ◽  
T.L. Kulova ◽  
G.A. Kirakosyan ◽  
I.A. Zamilatskov ◽  
...  
Ionics ◽  
2009 ◽  
Vol 16 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. Rajendran ◽  
V. Shanthi Bama ◽  
M. Ramesh Prabhu

2019 ◽  
Vol 91 (8) ◽  
pp. 1361-1381 ◽  
Author(s):  
Victor Chaudoy ◽  
Johan Jacquemin ◽  
François Tran-Van ◽  
Michaël Deschamps ◽  
Fouad Ghamouss

Abstract In this work, the physical, transport and electrochemical properties of various electrolytic solutions containing the 1-propyl-1-methylpyrrolidinium bis[fluorosulfonyl]imide ([C3C1pyr][FSI]) mixed with the lithium bis[(trifluoromethyl)sulfonyl]imide (Li[TFSI]) over a wide range of compositions are reported as a function of temperature at atmospheric pressure. First, the ionicity, lithium transference number, and transport properties (viscosity and conductivity) as well as the volumetric properties (density and molar volume) were determined as a function of lithium salt concentration from 293 to 343 K. Second, the self-diffusion coefficient of each ion in solution was measured by nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradients (PFG). Moreover, an analysis of the collected nuclear Overhauser effect (NOE) data along with ab initio and COSMO-RS calculations was conducted to depict intra and intermolecular neighbouring within the electrolytic mixtures. Based on this analysis, and as expected, all activation energies increase with the Li[TFSI] concentration in solution, and all activation energies were determined from the self-diffusion data for all ions. Interestingly, regardless of the composition in solution, these activation energies were similar, except for those determined for the [FSI]− anion. The activation energy of [FSI]− self-diffusion relatively decreases compared to the other ions as the lithium salt concentration increases. Furthermore, the lithium transference was strongly affected by the lithium salt concentration, reaching an optimal value and an ionicity of approximately 50 % at a molality close to 0.75 mol · kg−1. Finally, these electrolytes were used in lithium-ion batteries (i.e. Li/NMC and LTO/NMC), demonstrating a clear relationship between the electrolyte formulation, its transport parameters and battery performance.


Ionic conductivity polymer electrolyte film based on epoxidized deproteinized natural rubber (EDPNR) and lithium salt lithium triflate (LiCF3SO3) were prepared by solution casting technique. The EDPNR was prepared from deproteinized natural rubber latex (DNR) epoxidized in the latex stage with fresh peracetic acid 33%, which was deproteinized by incubation of the latex with 0,1 wt% urea and 1 wt% surfactant. The ionic conductivity of EDPNR mixed with lithium salt was investigated through impedance analysis. The results show that the conductivity of EDPNR/ LiCF3SO3 mixture was dependent on LiCF3SO3 salt concentration and amount of epoxy group. The highest ionic conductivity at room temperature obtained is 1,71 x 10-5 S.cm-1 at 35 wt% LiCF3SO3 and 45 mol% epoxy groups. Fourier transform infrared spectroscopy (FTIR) spectra showed evidence of complexation between EDPNR and LiCF3SO3. Glass transition temperature, Tg displayed an increasing trend in which are the increase in salt concentration and the increase in epoxy group concentration.


1993 ◽  
Vol 66 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
O BOHNKE ◽  
G FRAND ◽  
M REZRAZI ◽  
C ROUSSELOT ◽  
C TRUCHE

2016 ◽  
Vol 205 ◽  
pp. 6-17 ◽  
Author(s):  
P. Pradeepa ◽  
S. Edwin raj ◽  
G. Sowmya ◽  
J. Kalaiselvimary ◽  
M. Ramesh Prabhu

Author(s):  
Maike Wirtz ◽  
Max Linhorst ◽  
Philipp Veelken ◽  
Hermann Tempel ◽  
Hans Kungl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document