scholarly journals Organic Rankine cycle systems for engine waste-heat recovery: Heat exchanger design in space-constrained applications

2019 ◽  
Vol 199 ◽  
pp. 111968 ◽  
Author(s):  
Xiaoya Li ◽  
Jian Song ◽  
Guopeng Yu ◽  
Youcai Liang ◽  
Hua Tian ◽  
...  
Author(s):  
Frederick J. Cogswell ◽  
David W. Gerlach ◽  
Timothy C. Wagner ◽  
Jarso Mulugeta

A 5-kW Organic Rankine Cycle (ORC) was designed for mobile 60-kW diesel engine waste heat recovery applications to provide additional electricity for powering air conditioners. The ORC uses a non-flammable, near-zero-global-warming-potential fluid (Novec649) in a supercritical cycle. The system conceptual design and some observations on the component specification are described. The system will utilize an advanced oil-free high speed direct drive turbine. The proposed power generation module has a volume of ∼3 ft3 and contains the turbine, generator, pump, recuperator, and electrical components. The heat rejection heat exchanger is located on the power generation module in a configuration similar to mini-split air conditioners. The heat recovery heat exchanger (supercritical heater) is attached to the diesel generator and placed in series before the OEM muffler. The supercritical heater must be carefully designed to prevent the refrigerant from overheating, while still maintaining a high effectiveness.


2014 ◽  
Vol 53 (44) ◽  
pp. 16924-16936 ◽  
Author(s):  
Cheng-Liang Chen ◽  
Feng-Yi Chang ◽  
Tzu-Hsiang Chao ◽  
Hui-Chu Chen ◽  
Jui-Yuan Lee

Energy ◽  
2016 ◽  
Vol 97 ◽  
pp. 460-469 ◽  
Author(s):  
Adriano Desideri ◽  
Sergei Gusev ◽  
Martijn van den Broek ◽  
Vincent Lemort ◽  
Sylvain Quoilin

2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Sign in / Sign up

Export Citation Format

Share Document