System simulation and exergetic evaluation of hybrid propulsion system for crude oil tanker: A hybrid of solid-oxide fuel cell and gas engine

2020 ◽  
Vol 223 ◽  
pp. 113265
Author(s):  
Van-Tien Giap ◽  
Young Duk Lee ◽  
Young Sang Kim ◽  
Kook Young Ahn ◽  
Dae Hee Kim ◽  
...  
Author(s):  
A Haseltalab ◽  
L van Biert ◽  
BTW Mestemaker

The shipping industry is facing increasing requirements to decrease its environmental footprints. This challenge is being addressed through the use of alternative fuels and adoption of novel energy sources in advanced power and propulsion systems. In this paper, an energy management approach is proposed to determine the optimal split between different energy sources of a vessel with hybrid power generation. The power and propulsion system of the vessel consists of a gas engine-generator set and a solid oxide fuel cell, both fed with liquefied natural gas, and a battery. Specific fuel consumption curves and transient capabilities of the engine and fuel cell are used to determine the optimal split and the battery is used to deal with the fast load transients during heavy operations and also providing power during low power demanding activities. The performance of the proposed approach is evaluated for a dredging vessel with a DC power and propulsion system and compared to a benchmark vessel powered by gas engine-generator sets only. The results indicate a 16.5% reduction in fuel consumption compared to a benchmark non-hybrid power system and conventional power management.


2022 ◽  
Vol 334 ◽  
pp. 06007
Author(s):  
Simona Di Micco ◽  
Mariagiovanna Minutillo ◽  
Luca Mastropasqua ◽  
Viviana Cigolotti ◽  
Jack Brouwer

Implementing environmentally friendly fuels and high efficiency propulsion technologies to replace the Internal Combustion Engine (ICE) fueled by fossil fuels such as Heavy Fuel Oil (HFO) and Marine Gas Oil (MGO) on board ships represents an attractive solution for maritime power. In this context, fuel cells can play a crucial role, thanks to their high energy efficiency and ultra-low to zero criteria pollutant emissions and environmental impact. This paper performs the technical feasibility analysis for replacing the conventional diesel engine powertrain on board a commercial vessel with an innovative system consisting of ammonia-fuel-based Solid Oxide Fuel Cell (SOFC) technology. Taking into account the size of the diesel engines installed on board and the typical cruise performed by the commercial vessel, the ammonia consumption, as well as the optimal size of the innovative propulsion system have been assessed. In particular, the SOFC powertrain is sized at the same maximum power output as the main reference diesel engine. The mass and energy balances of the ammonia-based SOFC system have been performed in Aspen PlusTM environment. The gravimetric (kWh kg−1) and volumetric (kWh m−3) energy density features of the ammonia storage technology as well as the weight and volume of the proposed propulsion system are evaluated for verifying the compliance with the ship’s weight and space requirements. Results highlight that the proposed propulsion system involves an increase in weight both in the engine room and in the fuel room compared to the diesel engine and fuel. In particular, a cargo reduction of about 2.88% is necessary to fit the ammonia-based SOFC system compared to the space available in the reference diesel-fueled ship.


2004 ◽  
Vol 133 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Z.F Zhou ◽  
C Gallo ◽  
M.B Pague ◽  
H Schobert ◽  
S.N Lvov

2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2015 ◽  
Vol 30 (12) ◽  
pp. 1291
Author(s):  
ZHANG Yu-Yue ◽  
LIN Jie ◽  
MIAO Guo-Shuan ◽  
GAO Jian-Feng ◽  
CHEN Chu-Sheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document