Consequential environmental system analysis of expected offshore wind electricity production in Germany

Energy ◽  
2008 ◽  
Vol 33 (5) ◽  
pp. 747-759 ◽  
Author(s):  
M PEHNT ◽  
M OESER ◽  
D SWIDER
Author(s):  
Nhu Nguyen ◽  
Krish Thiagarajan Sharman

Abstract Synthetic ropes are increasingly being considered for various offshore and marine applications, including for mooring offshore wind turbines and for aquaculture cages. Studies have shown that nonlinear behaviors of a synthetic rope in a dynamic environment can complicate the mooring system analysis. Nonlinear stiffness coupled with time- and load history-dependent characteristics of fibrous materials can allow for over or under estimation of the mooring forces. It is critical that these nonlinear properties are incorporated correctly into a mooring model, especially for studies of structures’ performances in extreme events. The study aims at developing a simulation tool capable of predicting the dynamic behavior of highly extensible synthetic mooring system used in coastal and offshore floating structures. The program employs an implicit finite-difference approach to model the dynamic behaviors of the mooring line subjected to user-defined motions of the fairlead. As opposed to a linear stress-strain relationship typically incorporated in other mooring models, the current program is built with constitutive model of fibrous materials to account for the nonlinearity time- and load-dependent characteristics of synthetic lines. As part of the program, an inverted constitutive stress-strain model, in which stresses are calculated from given strains in stress-based formulas, were presented. Comparisons with published data indicates that the proposed inverted nonlinear stress-strain formulas were successfully integrated with the mooring solver. The coupled nonlinear mooring program predicts accurately both nonlinear reversible and irreversible deformations of synthetic cables.


2012 ◽  
Vol 223 (6) ◽  
pp. 3207-3218 ◽  
Author(s):  
Jasmine Diwakar ◽  
Jay Krishna Thakur

2019 ◽  
Author(s):  
Juan José Cartelle-Barros ◽  
David Cordal-Iglesias ◽  
Eugenio Baita-Saavedra ◽  
Almudena Filgueira-Vizoso ◽  
Bernardino Couñago-Lorenzo ◽  
...  

Abstract. Every nations' development lies on the electricity production, since it facilitates life and development of their society (heating, lighting, etc.). Nevertheless, conventional power plants, which use fossil fuels, cause environmental impacts, such as global warming, acidification, eutrophication, among many others. In addition, these conventional resources generate a dependence of external providers, which obstructs the progress of the developing countries. Renewable energies came to solve part of these problems. In this context, wind energy is one the technologies with more expansion all over the world. Offshore locations have a better wind resource than onshore ones and their exploitation is lower. The objective of this work is to present a holistic approach to assess the feasibility of a floating offshore wind farms in a life cycle perspective. The methodology proposed analyses the Net Present Value, the Internal Rate of Return, the Payback Period and the Levelized Cost of Energy of the farm. The case study is built based on a disruptive floating spar-type platform called TELWIND®, to be implemented in the Atlantic Area region. Results indicate how important these parameters are in economic terms and shows the pathways to reduce the costs of this type of infrastructures Furthermore, the methodology proposed allows the selection of the best region where a floating offshore wind farm can be installed. Finally, this study can be useful for Governments and relevant authorities to determine the best location of a floating offshore wind farm and develop the roadmap of offshore wind in their country.


Sign in / Sign up

Export Citation Format

Share Document