An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell

Energy ◽  
2021 ◽  
Vol 223 ◽  
pp. 120095
Author(s):  
Yuan Han ◽  
Houcheng Zhang ◽  
Ziyang Hu ◽  
Shujin Hou
2019 ◽  
Vol 198 ◽  
pp. 111842
Author(s):  
Xin Zhang ◽  
Jianying Du ◽  
Yee Sin Ang ◽  
Jincan Chen ◽  
Lay Kee Ang

2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


Author(s):  
Sung Ho Park ◽  
Young Duk Lee ◽  
Sang Gyu Kang ◽  
Kook Young Ahn

Fuel cell systems are currently regarded as a promising type of energy conversion system. Various types of fuel cell have been developed and investigated worldwide for portable, automotive, and stationary applications. In particular, in the case of large-scale stationary applications, the high-temperature fuel cells known as the molten carbonate fuel cell (MCFC) and the solid oxide fuel cell (SOFC) have been used as a power source due to their higher efficiency compared to low-temperature fuel cells. Because SOFCs have many advantages, including a high power density, low corrosion, and operability without a metal catalyst, many efforts to develop a SOFC hybrid system have been undertaken. SOFC hybrid systems with a gas turbine or engine show improved system efficiency through their utilization of waste heat and unreacted fuel. Especially, the internal combustion engine has the advantage of robustness, easy maintenance, and a low cost compared to gas turbines, this type is more adaptable for use in a hybrid system with a SOFC. However, the engine should be operated stably at a high air fuel ratio because the SOFC anode exhaust gas has a low fuel concentration. The homogeneous charge compression ignition (HCCI) engine has both the advantages of SI and CI engines. Moreover, the lean burn characteristics of the HCCI engine make it a strong candidate for SOFC hybrid systems. The objective of this work is to develop a novel cycle composed of a SOFC and a HCCI engine. In order to optimize the SOFC-HCCI hybrid system, a system analysis is conducted here using the commercial software Aspen Plus®. The SOFC model is validated with experimental data. The engine model is developed based on an empirical equation that considers the ignition delay time. The performance of the hybrid system is compared with that of a SOFC stand-alone system to confirm the optimization of the system. This study will be useful for the development of a new type of hybrid system which uses a fuel cell and an optimized system.


2015 ◽  
Vol 89 ◽  
pp. 683-689 ◽  
Author(s):  
Mingzhou Zhao ◽  
Houcheng Zhang ◽  
Ziyang Hu ◽  
Zhufeng Zhang ◽  
Jinjie Zhang

Author(s):  
Kas Hemmes

Fuel cells are defined as devices that convert chemical energy into heat and electric power. However, depending on their type, fuel cells have special features that can be used advantageously in for instance the chemical process industry of which examples will be given. Nevertheless these new applications use existing fuel cells like the MCFC. This is very exiting and many new possibilities are yet to be explored. However there is no principle reason why we should limit fuel cell technology to present types and the well known fuels like hydrogen, methane and methanol and air as oxidant. Recently interest in the direct conversion of carbon as a fuel has revived which has led to the development of a DCFC (direct carbon fuel cell) based on MCFC technology. Lawrence Livermore National Lab has demonstrated the DCFC successfully on a bench scale size. Also H2S is considered as a fuel. Further ahead opportunities are to be explored by replacing exothermic reaction in the chemical process industry such as partial oxidation reactions by their electrochemical counterpart. Thereby electricity is generated instead of excessive waste heat. Now that fuel cell technology is getting mature we can think of adopting this technology in new dedicated fuel cell types, with relatively short development trajectories, for application in totally new fields where electricity may just be a by-product.


2020 ◽  
Vol 162 ◽  
pp. 1715-1722
Author(s):  
Tianjun Liao ◽  
Jian Lin ◽  
Chuanyi Tao ◽  
Bihong Lin

Sign in / Sign up

Export Citation Format

Share Document