Adaptive moving knots meshless method for simulating time dependent partial differential equations

2018 ◽  
Vol 96 ◽  
pp. 115-122 ◽  
Author(s):  
Qinjiao Gao ◽  
Zongmin Wu ◽  
Shenggang Zhang
2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Jafar Biazar ◽  
Mohammad Hosami

Meshless method of line is a powerful device to solve time-dependent partial differential equations. In integrating step, choosing a suitable set of points, such as adaptive nodes in spatial domain, can be useful, although in some cases this can cause ill-conditioning. In this paper, to produce smooth adaptive points in each step of the method, two constraints are enforced in Equidistribution algorithm. These constraints lead to two different meshes known as quasi-uniform and locally bounded meshes. These avoid the ill-conditioning in applying radial basis functions. Moreover, to generate more smooth adaptive meshes another modification is investigated, such as using modified arc-length monitor function in Equidistribution algorithm. Influence of them in growing the accuracy is investigated by some numerical examples. The results of consideration of two constraints are compared with each other and also with uniform meshes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document