scholarly journals Image skin segmentation based on multi-agent learning Bayesian and neural network

2014 ◽  
Vol 32 ◽  
pp. 136-150 ◽  
Author(s):  
A.A. Zaidan ◽  
N.N. Ahmad ◽  
H. Abdul Karim ◽  
M. Larbani ◽  
B.B. Zaidan ◽  
...  
2019 ◽  
Vol 32 (12) ◽  
pp. 8315-8366 ◽  
Author(s):  
A. A. Zaidan ◽  
B. B. Zaidan ◽  
M. A. Alsalem ◽  
O. S. Albahri ◽  
A. S. Albahri ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Giuseppe Caso ◽  
Ozgu Alay ◽  
Guido Carlo Ferrante ◽  
Luca De Nardis ◽  
Maria-Gabriella Di Benedetto ◽  
...  

2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


Author(s):  
Yanlin Han ◽  
Piotr Gmytrasiewicz

This paper introduces the IPOMDP-net, a neural network architecture for multi-agent planning under partial observability. It embeds an interactive partially observable Markov decision process (I-POMDP) model and a QMDP planning algorithm that solves the model in a neural network architecture. The IPOMDP-net is fully differentiable and allows for end-to-end training. In the learning phase, we train an IPOMDP-net on various fixed and randomly generated environments in a reinforcement learning setting, assuming observable reinforcements and unknown (randomly initialized) model functions. In the planning phase, we test the trained network on new, unseen variants of the environments under the planning setting, using the trained model to plan without reinforcements. Empirical results show that our model-based IPOMDP-net outperforms the other state-of-the-art modelfree network and generalizes better to larger, unseen environments. Our approach provides a general neural computing architecture for multi-agent planning using I-POMDPs. It suggests that, in a multi-agent setting, having a model of other agents benefits our decision-making, resulting in a policy of higher quality and better generalizability.


Sign in / Sign up

Export Citation Format

Share Document