Investigation of the effect of low temperature aging on the mechanical properties and susceptibility to sulfide stress corrosion cracking of 22%Cr duplex stainless steel

2020 ◽  
Vol 113 ◽  
pp. 104553
Author(s):  
S.S.M. Tavares ◽  
R.T. Batista ◽  
R.V. Landim ◽  
J.A.C. Velasco ◽  
L.F. Senna
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jose-Gonzalo Gonzalez-Rodriguez ◽  
Andres Carmona Hernandez ◽  
E. Vázquez-Vélez ◽  
A. Contreras-Cuevas ◽  
Jorge Uruchurtu Chavarin

Purpose This paper aims to use an imidazole-based n-ionic Gemini surfactant derived from palm oil to inhibit the sulfide stress corrosion cracking of a supermartensitic stainless steel. Design/methodology/approach The slow strain rate testing technique, hydrogen permeation tests and potentiodynamic polarization curves have been used. Findings Addition of the inhibitor below the critical micelle concentration (CMC) decreased the corrosion current density (icorr), but not enough to avoid embrittlement due to the entry of hydrogen into the steel. Instead, the addition of the inhibitor close to the CMC decreased the icorr, suppressed the entry of hydrogen and inhibited the sulfide stress cracking of steel. Finally, the addition of inhibitor above the CMC led to a slight increase of icorr and promoted localized corrosion, however, the sulfide stress cracking of steel was inhibited. Originality/value A green sulfide stress corrosion cracking inhibitor of a supermartensitic stainless steel has been obtained.


Sign in / Sign up

Export Citation Format

Share Document