cracking resistance
Recently Published Documents


TOTAL DOCUMENTS

835
(FIVE YEARS 151)

H-INDEX

33
(FIVE YEARS 10)

2022 ◽  
Vol 210 ◽  
pp. 114453
Author(s):  
Masoud Ahmadi ◽  
Bekir Salgın ◽  
Bart J. Kooi ◽  
Yutao Pei

2022 ◽  
Vol 10 (1) ◽  
pp. 79-87
Author(s):  
Varuna M. ◽  
Bhavani Prasad G ◽  
Anjaneyappa Venkateshappa ◽  
Amarnath M S

2021 ◽  
pp. 9-14
Author(s):  
V. A. Gulevskiy ◽  
S. N. Tsurikhin ◽  
V. V. Gulevskiy ◽  
N. Yu. Miroshkin

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7839
Author(s):  
Muhammad Aakif Ishaq ◽  
Filippo Giustozzi

Accurate characterisation and appropriate binder selection are essential to increase the load-induced cracking resistance of asphalt mixtures at an intermediate temperature. Hence, the primary goal of this study was to correlate the cracking resistance exerted by the binder with the cracking performance of asphalt mixtures. The laboratory-based experimental plan covered various types of laboratory tests specified by various agencies and road authorities to study the correlation of a neat bitumen and five polymer-modified binders with their corresponding asphalt mixtures. The fatigue life of the binders was assessed through a Linear Amplitude Sweep (LAS) test and statistically correlated with various load-induced cracking parameters from the indirect tensile test, semi-circular bending (SCB) test, and four points bending beam test (FPBB) of asphalt mixtures at 25 °C. Binders and mixes were further grouped depending on their polymeric family (i.e., modified with a particular type of polymer) to validate their statistical correlation. The indicator that mostly correlated the binder properties with the asphalt mixture properties is the secant modulus from the SCB test. Fatigue parameters obtained through LAS better explain the asphalt fatigue performance obtained through FPBB; specifically, asphalt tests at high strain levels (e.g., 400 micro strain) better correlate to the LAS fatigue parameter (Nf).


CORROSION ◽  
10.5006/3949 ◽  
2021 ◽  
Author(s):  
Esteban Rodoni ◽  
Andreas Viereckl ◽  
Zakaria Quadir ◽  
Aaron Dodd ◽  
Kim Verbeken ◽  
...  

Low alloy steels combine relatively low cost with exceptional mechanical properties, making them commonplace in oil and gas equipment. However, their strength and hardness are restricted for sour environments to prevent different forms of hydrogen embrittlement. Materials used in sour services are regulated by the ISO 15156-2 standard, which imposes a maximum hardness of 250 HV (22 HRC) and allows up to 1.0 wt% Ni additions due to hydrogen embrittlement concerns. Low alloy steels that exceed the ISO 15156-2 limit have to be qualified for service, lowering their commercial appeal. As a result, high-performing, usually high-nickel, low alloy steels used successfully in other industries are rarely considered for sour service. In this work, the hydrogen stress cracking resistance of the high-nickel (3.41 wt%), quenched and tempered, nuclear-grade ASTM A508 Gr.4N low alloy steel was investigated using slow strain rate testing as a function of applied cathodic potential. Results showed that the yield strength and ultimate tensile strength were unaffected by hydrogen, even at a high negative potential of -2.00 V<sub>Ag/AgCl</sub>. Hydrogen embrittlement effects were observed once the material started necking, manifested by a loss in ductility with increasing applied cathodic potentials. Indeed, A508 Gr.4N was less affected by hydrogen at high cathodic potentials than a low-strength (yield strength = 340 MPa) ferritic-pearlitic low alloy steel of similar nickel content. Additionally, hydrogen diffusivity was measured using the hydrogen permeation test. The calculated hydrogen diffusion coefficient of the ASTM A508 Gr.4N was two orders of magnitude smaller when compared to that of ferritic-pearlitic steels. Hydrogen embrittlement and diffusion results were linked to the microstructure features. The microstructure consisted in a bainitic/martensitic matrix with the presence of Cr<sub>23</sub>C<sub>6</sub> carbides as well as Mo and V-rich precipitates, which might have played a role in retarding hydrogen diffusion, kept responsible for the improved HE resistance.


Author(s):  
Xinling Wang ◽  
Guanghua Yang ◽  
Wenwen Qian ◽  
Ke Li ◽  
Juntao Zhu

AbstractEngineered cementitious composites (ECC) show the distinguished characteristics of high post-cracking resistance and ductility. High-strength stainless steel wire rope (HSSSWR) has been successfully used for restoring or strengthening of existing structures. By combining the advantages of these two materials, a new composite system formed by embedding HSSSWR into ECC was proposed and expected to be a promising engineering material for repair or strengthening of structures. To investigate the tensile failure mechanism and mechanical properties of HSSSWR-reinforced ECC, an experimental study on 27 HSSSWR-reinforced ECC plates was conducted considering the effects of the reinforcement ratio of longitudinal HSSSWRs, formula of ECC and width of the plate. Test results revealed that HSSSWR-reinforced ECC exhibit superior post-cracking resistance, deformation capacity and crack-width control capacity. Increasing the reinforcement ratio of longitudinal HSSSWRs can effectively enhance the tensile strength, crack-width control capacity, deformation capacity and tensile toughness of HSSSWR-reinforced ECC. Adding thickener in ECC can significantly improve the crack-width control capacity and deformation capacity of HSSSWR-reinforced ECC due to enhancing uniform distribution of polyvinyl alcohol fibers, but would slightly reduce the cracking stress and maximum tensile stress by bringing small bubbles in the matrix. The tensile properties of HSSSWR-reinforced ECC plates are almost not affected by varying the plate width. Besides, a tensile constitutive model was developed for charactering the stress–strain relationship of HSSSWR-reinforced ECC in tension. Based on mechanical theories and failure characteristics of HSSSWR-reinforced ECC, the model parameters were determined, and calculation equations of cracking stress and tensile strength were proposed. The accuracy of the developed model and calculation equations was verified by test results.


Sign in / Sign up

Export Citation Format

Share Document