Determination of stress intensity factors for cracked bridge roller bearings using finite element analyses

2017 ◽  
Vol 169 ◽  
pp. 67-73 ◽  
Author(s):  
P. Noury ◽  
K. Eriksson
Author(s):  
S. W. Ng ◽  
K. J. Lau

Abstract In this paper a procedure is developed to assess the “local” accuracy of weight functions for finding stress intensity factors of centrally cracked finite plates given by Tsai and Ma (1989). It is found that the weight functions can be used to calculate stress intensity factors for practical cases, with “local” accuracy being within 6 %. In addition, weight functions generated from two finite element analyses are found to be accurate and may be used to assess new algorithms for finding weight functions.


Author(s):  
Chang-Young Oh ◽  
Ji-Soo Kim ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
Kyoungsoo Lee ◽  
...  

This paper proposes a simple method to estimate stress intensity factors due to welding residual stresses. In this study, finite element analyses for circumferentially cracked pipe are performed to calculate stress intensity factors. Four cracked geometries and two types of weld geometry are considered. KI-solutions for the nonlinear stress distribution on the crack face were determined in accordance with codes and standards. The results are compared with KI-solutions from finite element results. It is found that proposed simple method agrees well with FE results.


Sign in / Sign up

Export Citation Format

Share Document