New edge connection technology for cross laminated timber (CLT) floor slabs promoting two-way action

2021 ◽  
Vol 233 ◽  
pp. 111777
Author(s):  
Julian Asselstine ◽  
Frank Lam ◽  
Chao Zhang
2020 ◽  
Vol 12 (8) ◽  
pp. 3424
Author(s):  
Tetsuya Iwase ◽  
Takanobu Sasaki ◽  
Shogo Araki ◽  
Tomohumi Huzita ◽  
Chihiro Kayo

Cross-laminated timber (CLT) has gained popularity worldwide in recent years, and its use in buildings and civil engineering structures has attracted attention in Japan. In this study, the life-cycle greenhouse gas (GHG) balance and costs associated with CLT floor slabs were evaluated with respect to small-scale bridge repair as the first instance of the use of CLT in civil engineering projects in Japan. Additionally, waterproofing treatment was applied to CLT slabs, and the potential GHG and cost reduction of CLT in comparison with reinforced concrete (RC) slabs were examined. GHG emissions were the smallest for non-waterproofed CLT slabs and the greatest for RC slabs. When replacing RC slabs with CLT slabs without waterproofing, fossil-derived GHG emissions can be reduced by 73 kg-CO2eq/m2 per slab, and fossil/wood-derived GHG emissions can be reduced by 67 kg-CO2eq/m2; however, the use of disposed CLT as fuel is essential. Moreover, a reduction in GHG emissions can be expected if RC slabs are replaced with CLT slabs that are waterproofed only once every 20 years. Further, the cost associated with RC slabs is 20% of that attributable to CLT slabs. Hence, measures need to be taken to reduce the cost of CLT and waterproofing materials.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Author(s):  
Lidiya Kosheleva ◽  
◽  
Sergey Mijusov ◽  
Sergey Kletenkov ◽  
Daniil Ryazantsev ◽  
...  

2021 ◽  
Vol 273 ◽  
pp. 121820
Author(s):  
Marcos Cesar de Moraes Pereira ◽  
Luc Arthur Pascal Sohier ◽  
Thierry Descamps ◽  
Carlito Calil Junior

Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1481-1491
Author(s):  
Haoyu Huang ◽  
Xiaoqi Lin ◽  
Junhui Zhang ◽  
Zhendong Wu ◽  
Chang Wang ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 524
Author(s):  
Junhua Xu ◽  
Shuangbao Zhang ◽  
Guofang Wu ◽  
Yingchun Gong ◽  
Haiqing Ren

With the increasing popularity of cross-laminated timber (CLT) constructions around the world, there have been attempts to produce CLT using local wood species in different countries, such as Japanese larch (Larix kaempferi (Lamb.) Carr.) in China. Thus, the need to investigate the connection performance also increases to support the design and construction of CLT buildings using local wood species. In this study, the withdrawal properties of three different types of self-tapping screws (STS), with a diameter of 6 mm, 8 mm, and 11 mm, were tested with Japanese larch CLT. The results revealed that the withdrawal strength of STS increased with increasing density and effective length, but decreased with an increasing diameter. With a density increment of 0.05 g/cm3, the withdrawal strength increased by an average of 9.4%. With an effective length increment of 24 mm, the withdrawal strength increased by an average of 1.4%. An empirical regression model was adopted to predict the withdrawal strength of Japanese larch CLT based on the results, which can be used for potential engineering design of CLT connections using STS.


Sign in / Sign up

Export Citation Format

Share Document