precast elements
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 30)

H-INDEX

6
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6605
Author(s):  
Manuel Contreras-Llanes ◽  
Maximina Romero ◽  
Manuel Jesús Gázquez ◽  
Juan Pedro Bolívar

Construction and Demolition Waste (CDW) is among the largest waste streams in the world. Therefore, within the Circular Economy concept, there is a growing interest in its reuse. The purpose of this work was to study the use of recycled aggregates (RAs) obtained by a specific separation method from CDW, replacing natural aggregates (NAs) in the manufacture of precast concrete elements, such as kerbstones and paver blocks. The physical and technological properties of precast products formulated with RAs were analysed in accordance with current regulations, comparing them with those of commercial products manufactured with NAs. The results indicated that partial or total substitution of NAs by RAs increased the water absorption and apparent porosity values of the precast elements while reducing the bulk density and compressive strength. However, all units manufactured with RAs showed breaking load values higher than the minimum required by EN 1338 and, in some cases, slightly higher average tensile strength values than the reference material. In addition, some of the compositions including RAs gave rise to pieces that, according to their flexural strength, were classified as class 1 and marked S in accordance with EN 1340. According to abrasion resistance, in most cases, the precast elements are classified as Class 4 and I (≤20 mm). Finally, precast concrete produced from RAs satisfies the tolerance requirements for classification as class 3 (≤1.5 kg m−2). Therefore, it could be suitable for use in high pedestrian or traffic areas.


2021 ◽  
Vol 13 (16) ◽  
pp. 8923
Author(s):  
Stelladriana Volpe ◽  
Valentino Sangiorgio ◽  
Andrea Petrella ◽  
Armando Coppola ◽  
Michele Notarnicola ◽  
...  

The Fourth Industrial Revolution represents the beginning of a profound change for the building sector. In the last decade, the perspective of shapes, materials, and construction techniques is evolving fast due to the additive manufacturing technology. On the other hand, even if the technology is growing fast and several 3D printed buildings are being developed worldwide, the potential of concrete 3D printing in building prefabrication remains unexplored. Consequently, the application of new digital fabrication technologies in the construction industry requires a redesign of the construction process and its components. This paper proposes a novel conception, design, and prototyping of a precast building envelope to be prefabricated with extrusion-based 3D concrete printing (3DCP). The new design and conception aim to fully exploit the potential of 3D printing for prefabricated components, especially in terms of dry assembly, speed of implementation, reusability, recyclability, modularity, versatility, adaptability, and sustainability. Beyond the novel conceptual design of precast elements, the research investigated the 3D printable cementitious material based on a magnesium potassium phosphate cement (MKPC), which was devised and tested to ensure good performances of the proposed component. Finally, a prototype has been realised in scale with additive manufacturing technology in order to verify the printability and to optimize the extruder path. This study leads us to believe that the combined use of prefabricated systems, construction automation, and innovative materials can decisively improve the construction industry’s sustainability in the future.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2527
Author(s):  
Natalia Wielgus ◽  
Jan Kubica ◽  
Marcin Górski

This paper presents novel research on a fluidized bed combustion (FBC) fly ash-based geopolymer as a contribution to the problem of FBC fly ash disposal, and a proposal for a new geopolymer composition—an environmentally friendly material that is possible to use in construction. Geopolymer samples of various composition (containing FBC fly ash as the main raw material, metakaolin and CRT glass as additional components, and sodium silicate and sodium hydroxide as activators) were subjected to flexural and compressive strength tests. An investigation on the effect of the demolding time was carried out on one selected mixture. The test showed that both the composition and the demolding time have a decisive influence on the basic mechanical properties. A mixture containing FBC fly ash to metakaolin in a mass ratio of 3:1, removed from the mold after 14 days, was found to be the best in terms of the mechanical parameters expected from a material that could be used in construction, e.g., for the production of precast elements. According to the results obtained, FBC fly ash is a promising and environmentally friendly raw material for the production of geopolymer, with good mechanical properties and low density. Moreover, a high compressive strength can be obtained by curing the geopolymer at ambient temperature.


2021 ◽  
Author(s):  
D.R. Senarathna ◽  
◽  
B.L.S.H. Perera ◽  

Material waste is one of the main reasons for the client to suffer due to increments in unnecessary costs. Among all construction material wastes, concrete waste highly draws expenses to the project stakeholders. As a main component in construction, the volume of the concrete waste in Sri Lankan construction projects are considerably high, when comparing with the other material wastes. Currently, most of the countries are moving towards the sustainable developments while minimizing concrete waste. Therefore, applying traditional practices to minimize concrete waste have not been successful over the years. The aim of this research study is, to minimize concrete wastes by implementing contemporary practices that assists to reduce the project cost in Sri Lankan construction industry. In order to achieve the aim, comprehensive literature review, a questionnaire survey and semi-structured interviews were conducted to gather data in both qualitative and quantitative procedures. The empirical findings revealed that concrete waste has a positive relationship with the project cost. Same time, discovered the drivers and barriers that gains while implementing contemporary practices in Sri Lanka. Concrete recycling, precast elements, lean construction techniques, value engineering methods and few more other contemporary practices were identified that leads to minimize concrete waste. The results from the interviews found that many projects are willing to implement mentioned contemporary practices within their construction projects although there are few barriers. These findings deliver a valuable evidence to the practitioners with an in-depth understanding about the essential necessity of contemporary practices to construction projects.


2021 ◽  
Author(s):  
Marco Bovo ◽  
Lucia Praticò ◽  
Marco Savoia

Abstract The existing precast reinforced concrete structures, especially those not specifically designed against the earthquakes, have proved to be inadequate to withstand the remarkable seismic demands related to the presence of heavy roof elements. In fact, the cantilever columns entailing large top displacements and the poor devices adopted to connect different precast elements have shown high sensitivity to seismic actions. After the lesson learned from the recent Emilia earthquake of May 2012, causing many collapses and severe damage, reliable seismic design criteria have been established for the design of new precast structures and for the strengthening of the existing ones. Despite this, a large percentage of the existing precast buildings in the Italian territories actually has not been object of interventions and remains in an unsafe condition with regards to the seismic actions. In this context, the methods for a rapid seismic assessment can be very helpful both to estimate the current safety level of large building stocks and to plan the necessary strengthening interventions, possibly at the wide scale of an industrial area. To this aim, the paper proposes a new method, named PRESSAFE-disp (PRecast Existing Structure Seismic Assessment by Fast Evaluation-displacements), for the fast evaluation of the fragility curves of precast structures. The method follows the approach of the PRESSAFE method, but different damage criteria have been introduced in order to take into account the relative displacements and the sliding between different precast elements. The damage criteria considered, applicable to both structural elements and perimeter cladding elements conceived as non-structural elements, have been properly selected in order to capture the damage mechanisms observed during the several building inspections conducted by the authors in the aftermath of the 2012 Emilia earthquakes. In the present configuration, the method allows a comprehensive explanation of the seismic behaviour of the existing precast buildings and could be effectively adopted, for example, in earthquake loss estimations and seismic risk assessments of large Italian industrial areas, as well as of wide seismic-prone territories of the Mediterranean area.


Author(s):  
Brent Phares ◽  
Yoon-Si Lee ◽  
Travis K. Hosteng ◽  
Jim Nelson

This paper presents a laboratory investigation on the performance of grouted rebar couplers with the connection details similar to those utilized on the precast concrete elements of the Keg Creek Bridge on US 6 in Iowa. The testing program consisted of a series of static load tests, a fatigue test, and evaluation of the chloride penetration resistance of laboratory specimens. The goal of this testing was to evaluate the ability of the grouted rebar couplers to develop flexural capacity at the joint between the precast elements as well as the durability of the connection. For structural load testing, seven full-scale specimens, each with #14 epoxy-coated rebars spliced by epoxy-coated grouted couplers, were fabricated and tested in three different loading cases: four-point bending, axial tension plus bending, and a cyclic test of the system in bending. The static load testing demonstrated that the applied axial load had a minimal effect on the formation of cracks and overall performance of the connection. When ultra-high performance concrete was used as a bedding grout, the initiation of crack was slightly delayed but no considerable improvement was observed in the magnitude of the crack width during loading or the crack closure on unloading. The results of the seventh specimen, tested in fatigue to 1 million cycles, showed little global displacement and crack width throughout the test, neither of which expanded measurably. No evidence of moisture or chloride penetration was detected at the grouted joint during the 6-month monitoring.


2021 ◽  
Vol 7 ◽  
Author(s):  
Michele Egidio Bressanelli ◽  
Marco Bosio ◽  
Andrea Belleri ◽  
Paolo Riva ◽  
Piergiovanni Biagiotti

The 2012 Emilia earthquakes caused significant damage to existing precast reinforced concrete (RC) industrial buildings not specifically designed to resist seismic actions. The main failure mechanisms were related to the loss of support of beams and roof elements caused by high relative displacements, to the failure of the mechanical connections and consequent fall of cladding panels, to the damage at the base of the columns and to the collapse of RC forks at the top of the columns. In all cases, the behavior of the connections, and specifically of beam-to-column connections, demonstrated to be crucial, given that they may inhibit the exploitation of strength and ductility reserves in precast elements. This paper presents a beam-to-column connection restraint-device for precast industrial buildings. The device can be applied to existing structures to transfer horizontal seismic forces between beams and columns and to increase the energy dissipation of the system. Design criteria were defined with the aim to limit the relative maximum displacement at the beam-to-column interface and to mitigate the out-of-plane overturning of the beam. Numerical analyses were carried out to define a suitable shape of the device and to investigate its effectiveness in terms of both local and global behavior. To validate the computational results, experimental tests have been also carried out. The tests allowed to classify the device as “dissipative” according to UNI EN 15129. Finally, the design procedure has been validated considering a one-story industrial building case study designed in accordance with the Italian building code.


2021 ◽  
Vol 349 ◽  
pp. 04013
Author(s):  
Marta Lutomirska ◽  
Tomasz Lutomirski ◽  
Artur Sakowski

The durability of precast structures often depends on quality of execution of the connections between the structural elements. Essential also is their design and proper exploitation. This paper focuses on the magnitude of damages as well as repair methods used for a precast slab, which consists of prestressed double T slab elements supported on prestressed inverted T girders. It was found that during execution, the girders were forced to fit dowel bars, which resulted in their initial deformation. Moreover, those connection zones were subjected to unpredicted loading coming from delivery trucks. It resulted in crushing of the elastomeric bearings, uncontrolled rotation of double T precast elements, and further deformation of dowel bars. Numerous cracks, splits, concrete spalling, surface rust stains, and efflorescence were observed. To prevent failure, a project for repair was developed. The slab was lifted with the use of a jacks to provide necessary space for work. Damaged dowel bars and elastomeric bearings were removed. The concrete surface of double T beams and the inverted T girder was cleaned, refilled, prepared, and strengthened with FRP wraps. Additionally, steel angles were used to protect the edges of the inverted T girder.


Author(s):  
Jared Cantrell ◽  
Mustafa Mashal ◽  
Arya Ebrahimpour

<p>Accelerated Bridge Construction (ABC) has been gaining popularity in the United States. ABC offers rapid construction, less traffic disruption, improved quality and on-site safety, better durability, and less environmental impacts. Despite these advantages, application of ABC in seismic regions is still a challenge. In this research, a new precast pier system is proposed to emulate the traditional cast- in-place seismic design (e.g. formation of plastic hinges during earthquakes). The precast elements are connected using telescoping concrete-filled steel tubes in a grouted application. Large-scale experimental testing is carried out to investigate the seismic performance of the proposed pier system and to compare it against the traditional cast-in-place construction. Experimental results showed better ductility, strength and performance of the precast piers compared to cast-in-place benchmarks. Distributed plasticity models are developed to capture the seismic performance of the proposed precast pier system. The Idaho Transportation Department is planning to implement the research in this paper in an actual bridge in Idaho.</p>


Sign in / Sign up

Export Citation Format

Share Document