Comparative life cycle assessment of composite structures incorporating uncertainty and global sensitivity analysis

2021 ◽  
Vol 242 ◽  
pp. 112394
Author(s):  
Menghan Zhao ◽  
You Dong ◽  
Hongyuan Guo
2016 ◽  
Vol 22 (7) ◽  
pp. 1125-1137 ◽  
Author(s):  
Evelyne A. Groen ◽  
Eddie A. M. Bokkers ◽  
Reinout Heijungs ◽  
Imke J. M. de Boer

2017 ◽  
Vol 119 ◽  
pp. 12-23 ◽  
Author(s):  
Dinh S. Khang ◽  
Raymond R. Tan ◽  
O. Manuel Uy ◽  
Michael Angelo B. Promentilla ◽  
Phan D. Tuan ◽  
...  

Author(s):  
Marc Jaxa-Rozen ◽  
Astu Sam Pratiwi ◽  
Evelina Trutnevyte

Abstract Purpose Global sensitivity analysis increasingly replaces manual sensitivity analysis in life cycle assessment (LCA). Variance-based global sensitivity analysis identifies influential uncertain model input parameters by estimating so-called Sobol indices that represent each parameter’s contribution to the variance in model output. However, this technique can potentially be unreliable when analyzing non-normal model outputs, and it does not inform analysts about specific values of the model input or output that may be decision-relevant. We demonstrate three emerging methods that build on variance-based global sensitivity analysis and that can provide new insights on uncertainty in typical LCA applications that present non-normal output distributions, trade-offs between environmental impacts, and interactions between model inputs. Methods To identify influential model inputs, trade-offs, and decision-relevant interactions, we implement techniques for distribution-based global sensitivity analysis (PAWN technique), spectral clustering, and scenario discovery (patient rule induction method: PRIM). We choose these techniques because they are applicable with generic Monte Carlo sampling and common LCA software. We compare these techniques with variance-based Sobol indices, using a previously published LCA case study of geothermal heating networks. We assess eight environmental impacts under uncertainty for three design alternatives, spanning different geothermal production temperatures and heating network configurations. Results In the application case on geothermal heating networks, PAWN distribution-based sensitivity indices generally identify influential model parameters consistently with Sobol indices. However, some discrepancies highlight the potentially misleading interpretation of Sobol indices on the non-normal distributions obtained in our analysis, where variance may not meaningfully describe uncertainty. Spectral clustering highlights groups of model results that present different trade-offs between environmental impacts. Compared to second-order Sobol interaction indices, PRIM then provides more precise information regarding the combinations of input values associated with these different groups of calculated impacts. PAWN indices, spectral clustering, and PRIM have a computational advantage because they yield stable results at relatively small sample sizes (n = 12,000), unlike Sobol indices (n = 100,000 for second-order indices). Conclusions We recommend adding these new techniques to global sensitivity analysis in LCA as they give more precise as well as additional insights on uncertainty regardless of the distribution of the model outputs. PAWN distribution-based global sensitivity analysis provides a computationally efficient assessment of input sensitivities as compared to variance-based global sensitivity analysis. The combination of clustering and scenario discovery enables analysts to precisely identify combinations of input parameters or uncertainties associated with different outcomes of environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document