geothermal heating
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 51)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yifan Fan ◽  
Shikuan Zhang ◽  
Yonghui Huang ◽  
Zhonghe Pang ◽  
Hongyan Li

Recoverable geothermal resources are very important for geothermal development and utilization. Generally, the recovery factor is a measure of available geothermal resources in a geothermal field. However, it has been a pre-determined ratio in practice and sustainable utilization of geothermal resources was not considered in the previous calculation of recoverable resources. In this work, we have attempted to develop a method to calculate recoverable geothermal resources based on a numerical thermo-hydraulic coupled modeling of a geothermal reservoir under exploitation, with an assumption of sustainability. Taking a geothermal reservoir as an example, we demonstrate the effectiveness of the method. The recoverable geothermal resources are 6.85 × 1018 J assuming a lifetime of 100 years in a well doublet pattern for geothermal heating. We further discuss the influence of well spacing on the recoverable resources. It is found that 600 m is the optimal well spacing with maximum extracted energy that conforms to the limit of the pressure drop and no temperature drop in the production well. Under the uniform well distribution pattern for sustainable exploitation, the recovery factor is 26.2%, which is higher than the previous value of 15% when depending only on lithology. The proposed method for calculating the recoverable geothermal resources is instructive for making decisions for sustainable exploitation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Keir Becker ◽  
Richard E. Thomson ◽  
Earl E. Davis ◽  
Heinrich Villinger ◽  
C. Geoffrey Wheat

AbstractSix-year records of ocean bottom water temperatures at two locations in an isolated, sedimented deep-water (∼4500 m) basin on the western flank of the mid-Atlantic Ridge reveal long periods (months to >1 year) of slow temperature rises punctuated by more rapid (∼1 month) cooling events. The temperature rises are consistent with a combination of gradual heating by the geothermal flux through the basin and by diapycnal mixing, while the sharper cooling events indicate displacement of heated bottom waters by incursions of cold, dense bottom water over the deepest part of the sill bounding the basin. Profiles of bottom water temperature, salinity, and oxygen content collected just before and after a cooling event show a distinct change in the water mass suggestive of an incursion of diluted Antarctic Bottom Water from the west. Our results reveal details of a mechanism for the transfer of geothermal heat and bottom water renewal that may be common on mid-ocean ridge flanks.


Author(s):  
Elżbieta Hałaj ◽  
Leszek Pająk ◽  
Bartosz Papiernik

AbstractThe aquifer thermal energy storage (ATES) has gained attention in several countries as an installation for increasing the energy efficiency of geothermal systems and the use of waste heat. The Lower Cretaceous reservoir is known as one of the most prospective for geothermal purposes in Poland. However, in the southern part of the Mogilno–Łódź Trough (Central Poland) is considered to have a lower geothermal potential. The aim of this paper is to study whether the Lower Cretaceous reservoir in this area is suitable for aquifer thermal energy storage. Prior to dynamic simulations in Feflow© software, a regional Petrel© static parametric model which includes a multidisciplinary approach was prepared. A methodology of fitting Petrel’s structural and parametrical model to Feflow requirements is provided within this paper. The performance simulation of 4 systems has been conducted for 30 years. Increasing precipitation potential is expected for aragonite and calcite along with a temperature increase, while silica precipitation carries a much smaller risk. The paper presents potential for ATES systems in the Lower Cretaceous reservoir of the study area with the best doublet location having thermal recovery ratio of 0.47 and 0.34 for 30 and 40 K temperature differential scenario. An imbalance in heat injection/production in the storage system can cause the reservoir to cool faster than in conventional geothermal heating installation. ATES can provide a successful geothermal reservoir boosting in the case of applying a balanced injection of waste heat.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6024
Author(s):  
Alexey Korzhakov ◽  
Sergei Oskin

This article presents the results of the design of acoustic–magnetic device thermal protection technology based on simulation. The acoustic–magnetic device (AMD) was installed in the heat supply system of a greenhouse complex with a geothermal heat source, developed and patented by the authors of this paper. Simulation was performed to investigate the possibility of maintaining the acoustic transmitter temperature of the acoustic–magnetic device in its operating range. The QuickField Student Edition v 6.4 simulation environment was used for this purpose. Based on the results of the simulation, the optimum thermal mode of the acoustic–magnetic device was developed and implemented. The optimum temporal operating mode of the acoustic–magnetic device is necessary for the optimization of the non-reagent treatment of geothermal water in a heat supply system of a greenhouse complex. It allows for a considerable reduction in the intensity of scale formation in the heat exchanger and equipment of a geothermal heating system. As demonstrated by the simulation thermal modes, the acoustic–magnetic device provides conditions for the work maintenance of the AMD acoustic transmitter at the resonance frequency, reduces the power expenses, and increases the efficiency of the acoustic influence on the scale formed in the heat supply system of a greenhouse complex. The results of the simulation were implemented in the greenhouse complex of JSC “Raduga.” The thermal protection technology was realized by installing two acoustic–magnetic devices and automation systems in the geothermal heating system a greenhouse complex.


2021 ◽  
pp. 014459872110435
Author(s):  
Tianfu Xu ◽  
Yue’an Zhao ◽  
Jichu Zhao ◽  
Lanxin Zhang ◽  
Shuai Liu ◽  
...  

Dezhou City is located in northwestern Shandong Province, China, and is rich in geothermal resources. Approximately 30% of the geothermal wells and geothermal heating areas of Shandong Province are located in Dezhou. A doublet-well layout geothermal system was completed by the Lubei Geo-engineering Exploration Institute for local winter heating, which has been in operation for 4 years. The wellbores penetrated the Guantao Formation with a well spacing of 180 m. This study aims to assess the heat extraction performance of the current well layout and predict the temperature evolution and lifespan. Furthermore, larger well spacing schemes were used in a simulation to test the heat supply potential and sustainability. In this study, the thermal conductivity and permeability were calibrated using in situ measured data from a field production test. A relatively high permeability layer was found between the depths of 1468 and 1536 m. The temperature remained stable in the first 6 years and then started to decrease. The recharging (injection) water tended to concentrate along the bottom highly permeable layer and accounted for over 64% of the outflow in the 100th year of the simulation test. The outflow temperature decreased from 53.9°C to 50°C in the 32nd year, making it less viable for subsequent sustainable exploitation. Hence, a larger well spacing is required for long-term operation based on the same geothermal reservoir. It was found that a spacing of 400 m could guarantee an outflow temperature above 50°C over a 100-year lifespan with an 80 m3/h pumping (production) rate. Moreover, the sustainability of the 600-m spacing was almost 2.5 times that of the 400 m case. The modeling and analysis method can be useful for the development and optimization of a doublet-well geothermal system under similar conditions.


2021 ◽  
Vol 13 (18) ◽  
pp. 10353
Author(s):  
Barbara Pavlakovič ◽  
Milica Rančić Demir ◽  
Nejc Pozvek ◽  
Maja Turnšek

From household geothermal heat pumps to industrial geothermal heating and electricity production, geothermal energy is one of the most promising future climate change mitigation areas. This paper aims to analyse the potential role that the tourism industry has in the promotion of geothermal energy. Although general knowledge and understanding of geothermal energy is often relatively low, geothermal energy tourism has the potential to encourage the public to use and learn about geothermal energy and its applications. The paper first provides a theoretical conceptualisation of geothermal energy tourism at the energy production level and energy usage level. Empirical results from an online survey amongst a sample of the Slovenian population show that there is a reasonably strong interest in geothermal energy tourism, correlating with the public image of geothermal energy. The study furthermore identified three main motivational factors for energy tourism: the first is “Knowledge,” followed by “Having fun,” with the lowest level on the motivational factor being “Self-recognition.” The paper finally provides future recommendations on geothermal energy tourism as a tool for wider public acceptance but also knowledge on the potential risks of geothermal energy as a sustainable energy source.


Author(s):  
Alejandro García‐Gil ◽  
Miguel Á. Marazuela ◽  
Violeta Velasco ◽  
Mar Alcaraz ◽  
Enric Vázquez‐Suñé ◽  
...  

2021 ◽  
pp. 117609
Author(s):  
Gurpreet Kaur ◽  
Magdalena Krol ◽  
Satinder Kaur Brar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document