Fire resistance of post-earthquake steel beams insulated with a novel fire-resistive coating- FR-ECC

2021 ◽  
Vol 246 ◽  
pp. 112887
Author(s):  
Zi-wei Cai ◽  
Jiang-tao Yu ◽  
Li-kang Tian ◽  
Fei-chi Liu ◽  
Ke-quan Yu
2019 ◽  
Vol 152 ◽  
pp. 284-295 ◽  
Author(s):  
Shenggang Fan ◽  
Li Du ◽  
Shuai Li ◽  
Liyuan Zhang ◽  
Ke Shi

2017 ◽  
Vol 172 ◽  
pp. 665-672 ◽  
Author(s):  
Marek Łukomski ◽  
Piotr Turkowski ◽  
Paweł Roszkowski ◽  
Bartłomiej Papis

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Junli Lyu ◽  
Qichao Chen ◽  
Huizhong Xue ◽  
Yongyuan Cai ◽  
Jingjing Lyu ◽  
...  

To investigate the fire resistance of composite beams with restrained superposed slabs, three specimens were tested under uniformly distributed loads in a furnace. The effects of the thickness of the postcast top layer in superposed slabs and the spacing of shear studs on the structural behaviours of composite beams under fire were further examined. During the tests, the temperature distributions of the superposed slabs and steel beams as well as the displacements at their key positions were recorded and analysed. It was found that the temperature of the concrete superposed slabs decreased long their heights from the bottom. The most drastic change of the temperature along the slab cross section was found in the region with a distance of 40 mm to the slab bottom. The concrete superposed slabs could impose restraints to the steel beams due to their incompatible deformations. Cracks were developed on the top surfaces of the specimens and the superposing interfaces between the precast slabs and postcast top layers were not broken. Through the comparisons of different specimens, the spacing of shear studs could have a significant effect on the fire resistance of composite beams, especially for their deformation recovery capacities. In contrast, the effect of the thickness of the postcast top layers was negligible. ABAQUS was employed to simulate the temperature fields and deformation behaviours of composite beam specimens based on a sequenced thermomechanical coupling analysis. The numerical results agreed well with the experiment data, which validated the developed numerical model.


2010 ◽  
Vol 10 (02) ◽  
pp. 253-271 ◽  
Author(s):  
MIN YU ◽  
XIAOXIONG ZHA ◽  
JIANQIAO YE ◽  
YI Li

This paper presents the results of dynamic responses and fire resistance of concrete-filled steel tubular (CFST) frame structures in fire conditions by using the nonlinear finite element method. Both strength and stability criteria are considered in the collapse analysis. The frame structures are constructed with circular CFST columns and steel beams of I-sections. In order to validate the finite element solutions, the numerical results are compared with those from a fire resistance test on CFST columns. The finite element model is then adopted to simulate the behavior of frame structures in fire. The structural responses of the frames, including the critical temperature and fire-resisting limit time, are obtained for the ISO-834 standard fire. Parametric studies are carried out to show their influence on the load capacity of the frame structures in fire. Suggestions and recommendations are presented for possible adoption in future construction and design of similar structures.


Sign in / Sign up

Export Citation Format

Share Document