scholarly journals An Efficient Solution for Model Checking Graph Transformation Systems

2008 ◽  
Vol 213 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Luciano Baresi ◽  
Vahid Rafe ◽  
Adel T. Rahmani ◽  
Paola Spoletini
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Okan Özkan

Abstract We present an approach for modeling adverse conditions by graph transformation systems. To this end, we introduce joint graph transformation systems which involve a system, an interfering environment, and an automaton modeling their interaction. For joint graph transformation systems, we present notions of correctness under adverse conditions. Some instances of correctness are expressible in LTL (linear temporal logic), or in CTL (computation tree logic), respectively. In these cases, verification of joint graph transformation systems is reduced to temporal model checking. To handle infinite state spaces, we incorporate the concept of well-structuredness. We discuss ideas for the verification of joint graph transformation systems using results based on well-structuredness.


Author(s):  
VAHID RAFE ◽  
ADEL T. RAHMANI

Graph Grammars have recently become more and more popular as a general formal modeling language. Behavioral modeling of dynamic systems and model to model transformations are a few well-known examples in which graphs have proven their usefulness in software engineering. A special type of graph transformation systems is layered graphs. Layered graphs are a suitable formalism for modeling hierarchical systems. However, most of the research so far concentrated on graph transformation systems as a modeling means, without considering the need for suitable analysis tools. In this paper we concentrate on how to analyze these models. We will describe our approach to show how one can verify the designed graph transformation systems. To verify graph transformation systems we use a novel approach: using Bogor model checker to verify graph transformation systems. The AGG-like graph transformation systems are translated to BIR — the input language of Bogor — and Bogor verifies that model against some properties defined by combining LTL and special purpose graph rules. Supporting schema-based and layered graphs characterize our approach among existing solutions for verification of graph transformation systems.


Sign in / Sign up

Export Citation Format

Share Document