Assessing the variation in traits for manganese deficiency tolerance among maize genotypes

2021 ◽  
Vol 183 ◽  
pp. 104344
Author(s):  
Lizhi Long ◽  
Rebekka Kjeldgaard Kristensen ◽  
Jingxuan Guo ◽  
Fanjun Chen ◽  
Pai Rosager Pedas ◽  
...  
2009 ◽  
Vol 17 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Jun-Yi CHEN ◽  
Yi-Lin CAI ◽  
Li XU ◽  
Zhi-Guo YANG ◽  
Xiao-Ling GAN ◽  
...  

2002 ◽  
Vol 94 (1) ◽  
pp. 96 ◽  
Author(s):  
Carlos Costa ◽  
Lianne M. Dwyer ◽  
Xiaomin Zhou ◽  
Pierre Dutilleul ◽  
Chantal Hamel ◽  
...  

1942 ◽  
Vol 143 (2) ◽  
pp. 417-425
Author(s):  
Paul D. Boyer ◽  
James H. Shaw ◽  
Paul H. Phillips
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


Genetics ◽  
2020 ◽  
Vol 217 (1) ◽  
Author(s):  
Jaclyn M Noshay ◽  
Alexandre P Marand ◽  
Sarah N Anderson ◽  
Peng Zhou ◽  
Maria Katherine Mejia Guerra ◽  
...  

Abstract Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes.


2014 ◽  
Vol 388 (1-2) ◽  
pp. 323-335 ◽  
Author(s):  
Eduardo D. Mariano ◽  
Aluisio S. Pinheiro ◽  
Edivaldo E. Garcia ◽  
Willem G. Keltjens ◽  
Renato A. Jorge ◽  
...  

1996 ◽  
Vol 127 (2) ◽  
pp. 207-213
Author(s):  
C. M. Knott

SUMMARYThe effect of foliar applications of different formulations of manganese on pea yield and ‘marsh spot’, a seed defect which reduces quality of peas (Pisum sativum) grown for human consumption or seed was evaluated in nine experiments in the East of England from 1992 to 1994. Sprays, at dose rates recommended by the manufacturer, were applied to field peas, cvs Maro or Bunting, on three occasions at the four node pea growth stage, first pod and 14 days later, or on two occasions at first pod stage and 14 days later. Although the sites selected had a previous history of marsh spot in pea crops, there were no visual foliar symptoms of manganese deficiency in peas grown in any year at any site. Applications of manganese did not increase yields compared with untreated peas and there was no effect on maturity. Marsh spot was negligible in untreated peas at sites where soils had the lowest levels of manganese (22 and 44 mg/kg), thus soil analysis for manganese may be inappropriate as a guide to prediction of marsh spot problems. The three spray programmes, which included an early application of manganese at the 4–5 node stage, gave no statistically significant improvements in marsh spot control. There was a good correlation between amounts of manganese applied and reductions in marsh spot, and manganese sulphate, 31% w/w at 3·1 kg/ha applied as a split dose, achieved the best control. An exception was the manganese carbonate 50% w/v formulation which may have been poorly assimilated by the plant. Chelated manganese as MnEDTA 6·4% w/v at the rates recommended by the manufacturer was inadequate for control of marsh spot in all years.


Sign in / Sign up

Export Citation Format

Share Document