manganese carbonate
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 34)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Axel Steffen ◽  
Yu Xiong ◽  
Radostina Georgieva ◽  
Ulrich Kalus ◽  
Hans Bäumler

Hemoglobin microparticles (HbMP) produced with a three-step procedure including co-precipitation of hemoglobin with manganese carbonate, protein crosslinking and dissolution of the carbonate template were shown to be suitable for application as artificial oxygen carriers. First preclinical safety investigations delivered promising results. Bacterial safety plays a decisive role during the production of the HbMP. Therefore, bioburden and endotoxin content of the starting materials (especially hemoglobin) and the final particle suspension are intensively tested. However, some bacteria may not have been detected by the standard tests due to low concentration. The aim of this study was to investigate how these bacteria would behave in the fabrication process. Biocidal effects are known for glutaraldehyde and for ethylenediaminetetraacetic acid, chemicals that are used in the fabrication process of HbMP. It could be shown that both chemicals prevent bacterial growth at the concentrations used during the HbMP fabrication. In addition, the particle production was carried out with hemoglobin solutions spiked with Escherichia coli or Staphylococcus epidermidis. No living bacteria could be detected in the final particle suspensions. Therefore, we conclude that the HbMP fabrication procedure is safe in respect of a bacterial contamination.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Li ◽  
Lingling Chen ◽  
Ling Huang ◽  
Xiangling Ye ◽  
Zefeng Lin ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is one of the most daunting diseases, low toxicity and efficient approaches are in urgent demand. Herein, we developed degradable mesoporous manganese carbonate nanocubes (MnCO3 NCs), incorporated with survivin shRNA-expressing plasmid DNA (iSur-pDNA) and riboflavin (Rf), namely MRp NCs, for synergistic TNBC therapy. The MnCO3, itself, could generate O2 and CO2 under H2O2 and thus relieve the hypoxia and acidic tumor microenvironment (TME). Furthermore, the MnCO3 NCs exhibited high Rf loading capacity and iSur-pDNA delivery ability after polyethyleneimine modification. Specifically, MRp NCs decompose in TME, meanwhile they deprived the endogenous expression of survivin gene and significantly amplified the generation of reactive oxygen species after exposure to LED light, resulting in serious tumor destruction. The multifunctional MRp NCs with LED light-driven characters are able to provide a high efficiency, low toxicity and promising strategy for TNBC therapy.


Exploration ◽  
2021 ◽  
Author(s):  
Haoyuan Zhang ◽  
Xueting Pan ◽  
Qingyuan Wu ◽  
Juan Guo ◽  
Chaohui Wang ◽  
...  

2021 ◽  
Author(s):  
Lihua Li ◽  
Lingling Chen ◽  
Ling Huang ◽  
Xiangling Ye ◽  
Zefeng Lin ◽  
...  

Abstract Triple-negative breast cancer (TNBC) is one of the most daunting diseases, and low toxicity and efficient approaches are in urgent demand. Herein, we developed degradable mesoporous manganese carbonate nanocubes (MnCO3 NCs), incorporated with survivin shRNA-expressing plasmid DNA (iSur-pDNA) and riboflavin (Rf), namely MRp NCs, for synergistic TNBC therapy. The MnCO3, itself, could generate O2 and CO2 under H2O2 and thus improve the hypoxia and acidic tumor microenvironment (TME). Furthermore, the MnCO3 NCs exhibited high Rf loading capacity and iSur-pDNA delivery ability after polyethyleneimine modification. Specifically, MRp NCs decompose in TME, meanwhile they deprived the endogenous expression of survivin gene and significantly amplified the generation of reactive oxygen species after exposure to LED light, resulting in serious tumor destruction. The multifunctional MRp NCs with LED light-driven characters are able to provide a high efficiency, low toxicity and promising strategy for TNBC therapy.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Zhang ◽  
Jian Li ◽  
Long Chen ◽  
Yi Wei ◽  
Qiang Shi ◽  
...  

AbstractThe origin process of manganese ores remains unsolved worldwide. Exploring the origins of stromatolites that contain manganese may be a key to deciphering the sedimentary environments and metallogenic processes of these deposits. However, only a few manganese stromatolites have been discovered and described until now. Microbialites are well developed in the manganese deposits, located near the top of the Ediacaran Doushantuo Formation in Chengkou area of Chongqing, northern Yangtze Craton, but has not been explicitly studied; and whether they are true stromatolites or Epiphyton microbialites remains controversial. Based on field and core observations and thin section microscopy, the characteristics of five types of manganese stromatolites and their growth modes are described in detail in this study. The results show that these stromatolites grew in a biostrome in shoal and lagoon environments and were syngenetic with oncolites and oolites on a carbonate ramp behind the shoal. Manganese stromatolites can be categorized into three forms: (1) stratiform; (2) columnar, which includes branched and columnar types; and (3) stratiform-columnar, which is a transitional type. Based on a criterion that the diameter is less than or greater than 1 mm, columnar stromatolites are further divided into micro-columnar (< 1 mm) and columnar (> 1 mm) columns, which display synchronous growth and are similar to Pseudogymnosolenaceae. Their shapes are mainly controlled by water depths and hydrodynamic strengths. The greater the water depth, the more columnar the columns tend to be. Excessively strong hydrodynamic conditions decrease the growth rate of stromatolites, and they even stopped growth due to wave damage. Furthermore, pillared laminar textures (not Epiphyton), which consist of dendritic, micro-branched and micro-columnar stromatolites, are a common feature of the larger stratiform, stratiform-columnar and columnar stromatolites. The alternations of laminae with different internal textures record subtle fluctuations in water depths and hydrodynamic strengths, which indicate that stromatolite growth is controlled by tidal cycles at the lamina level. Therefore, it is possible that the vertical evolution of the stromatolites could reveal the changing characteristics of both local and regional sedimentary environments, i.e., stromatolite shape changes from columnar to stratiform can represent the onset of shallower environments with weak hydrodynamic conditions. In addition, as important reef builders in shallow carbonate ramps, microstromatolites accelerate the development from ramp to platform. Indicators of microbial control on stromatolite shapes and manganese sedimentation processes include the fabric of stromatolite laminae, organic rhodochrosite with a micritic texture that is usually clotted, spherical, tubular, fibrous or dendritic, which suggests that the laminae resulted from microbially induced in situ precipitation.


2021 ◽  
Author(s):  
Wen-Jun Li ◽  
Zi-Dong Peng ◽  
Zhi-Guo Dong ◽  
Bang-Lu Zhang ◽  
Bing-Yu Gao ◽  
...  

Abstract Sedimentary manganese carbonate deposits, the major economic source of Mn globally, are the product of complex interactions that occur in the marine environment, including both biological Mn(II) oxidation and Mn(IV) reduction. Precise and accurate age constraints for Mn carbonate deposits have been difficult to obtain, hindering the understanding of possible correlations between Mn metallogenic and paleoenvironmental processes at regional to global scale. The involvement of organic matter during Mn carbonate mineralization, however, allows for the Re-Os system, an ideal geochronological tool for determining the depositional or alteration ages of organic-rich rocks, to be applied. Here we present the first Re-Os systematics of Mn carbonate ores from the giant Ortokarnash Mn deposit in the West Kunlun orogenic belt, Xinjiang, China. The use of the Re-Os geochronometer, along with petrographic, whole-rock total organic carbon, and major element analyses, allows for the depositional age and mineralizing processes to be directly constrained. The Mn carbonate ores with relatively homogeneous initial 187Os/188Os values yield a robust mineralization age of 320.3 ± 6.6 Ma (Model 1; Isoplot regression) or 321.8 ± 14.5 Ma (Monte Carlo simulation). This age correlates well with U-Pb ages of the youngest detrital zircon group from the footwall volcanic breccia-bearing limestone and a newly obtained Re-Os age from the hanging-wall marlstones. Enrichment of hydrogenous Re and Os in the Ortokarnash Mn carbonate ores is likely related to the variable redox environments during Mn carbonate mineralization, where Re tends to be preserved in the organic matter that persists following the diagenetic reduction of the Mn(IV) oxyhydroxides in suboxic or anoxic sediment pore water. Conversely, Os was likely absorbed by Mn(IV) oxyhydroxides in oxic seawater during Mn(II) oxidation. Elevated Osinitial(i) for the Mn carbonate ores relative to that of the coeval global seawater value suggests that an increased riverine flux may have been a contributing factor leading to Mn mineralization.


Author(s):  
Meschack Mukunga Muanda ◽  
Pele Pascal Daniel Omalanga

A sulfate solution containing 1773.965 mg/L Mn2+, 3216.178 mg/L Mg2+ and 566.254 mg/L Ca2+ was used to perform the maximum recovery of manganese and minimum recovery of magnesium. Carbonate precipitation was used due to the better selectivity for manganese over magnesium and other impurities recovery compared to hydroxide precipitation. Four factors were studied: solution pH value, contact time, reaction temperature and sodium carbonate consumption. Analysis of variance (ANOVA) and response surface methodology (RSM) were used to determine the optimum. Under the optimum conditions, the manganese and magnesium recoveries were the highest and the lowest respectively, while the pH, the time, the temperature and the volume of Na2CO3 were the lowest.  The values of the four factors were found as followed: 8.9293, 60.69 min, 77.95°F, and 50.7650 mL respectively. Moreover, the recoveries of manganese and magnesium were 99.9799% and 4.3045% respectively. The results show that optimization using RSM is effective in improving carbonate precipitation of manganese.


Sign in / Sign up

Export Citation Format

Share Document