dose rates
Recently Published Documents


TOTAL DOCUMENTS

1751
(FIVE YEARS 395)

H-INDEX

54
(FIVE YEARS 7)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Ko Sakauchi ◽  
Wataru Taira ◽  
Joji M. Otaki

The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.


2022 ◽  
Vol 17 (01) ◽  
pp. C01003
Author(s):  
C. Oancea ◽  
C. Bălan ◽  
J. Pivec ◽  
C. Granja ◽  
J. Jakubek ◽  
...  

Abstract This work aims to characterize ultra-high dose rate pulses (UHDpulse) electron beams using the hybrid semiconductor pixel detector. The Timepix3 (TPX3) ASIC chip was used to measure the composition, spatial, time, and spectral characteristics of the secondary radiation fields from pulsed 15–23 MeV electron beams. The challenge is to develop a single compact detector that could extract spectrometric and dosimetric information on such high flux short-pulsed fields. For secondary beam measurements, PMMA plates of 1 and 8 cm thickness were placed in front of the electron beam, with a pulse duration of 3.5 µs. Timepix3 detectors with silicon sensors of 100 and 500 µm thickness were placed on a shifting stage allowing for data acquisition at various lateral positions to the beam axis. The use of the detector in FLEXI configuration enables suitable measurements in-situ and minimal self-shielding. Preliminary results highlight both the technique and the detector’s ability to measure individual UHDpulses of electron beams delivered in short pulses. In addition, the use of the two signal chains per-pixel enables the estimation of particle flux and the scattered dose rates (DRs) at various distances from the beam core, in mixed radiation fields.


2022 ◽  
Vol 165 ◽  
pp. 108755
Author(s):  
Roberto Pergreffi ◽  
Federico Rocchi ◽  
Antonio Guglielmelli ◽  
Paolo Ferrari

Author(s):  
Serhat Aras ◽  
İhsan Oğuz Tanzer ◽  
Ünal Can ◽  
Hikmettin Demir ◽  
Engin Sümer ◽  
...  
Keyword(s):  

Author(s):  
S. Vernetto ◽  
M. Laurenza ◽  
M. Storini ◽  
A. Zanini ◽  
P. Diego ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
pp. 334-339
Author(s):  
Lamiye YILDIZ

The present’s experimental data on the influence of the venom of the honey bee on the life span of experimental animals irradiated with small doses of gamma radiation on physiological and pharmacological action venom of the honey bee Apis mellifera Caucasica. The aim of the studies was to study the radioprotective effect of the pre-introduced venom Apis mellifera Caucasica with a single gamma irradiation of 60Co mice at doses of 1.3, 5, 7, 10 Gy at irradiation dose rates of 1 Gr / min. Injection of venom followed by gamma irradiation of 60Co at a dose of D = 1, 3, 5 and 7 Gy at an irradiation dose rate of 1 Gy / min increased the life span of the experimental groups of mice ranging from 45% to 56 % and from 52% to 67%, respectively. An increase in the lifespan of experimental rats exposed to radiation with the preliminary introduction of the venom of the honey bee.


2021 ◽  
Author(s):  
Elena K. Zaharieva ◽  
Megumi Sasatani ◽  
Kenji Kamiya

We present time and dose dependencies for the formation of 53BP1 and γH2AX DNA damage repair foci after chronic radiation exposure at dose rates of 140, 250 and 450 mGy/day from 3 to 96 h, in human and mouse repair proficient and ATM or DNA-PK deficient repair compromised cell models. We describe the time/dose-response curves using a mathematical equation which contains a linear component for the induction of DNA damage repair foci after irradiation, and an exponential component for their resolution. We show that under conditions of chronic irradiation at low and medium dose rates, the processes of DNA double-strand breaks (DSBs) induction and repair establish an equilibrium, which in repair proficient cells manifests as a plateau-shaped dose-response where the plateau is reached within the first 24 h postirradiation, and its height is proportionate to the radiation dose rate. In contrast, in repair compromised cells, where the rate of repair may be exceeded by the DSB induction rate, DNA damage accumulates with time of exposure and total absorbed dose. In addition, we discuss the biological meaning of the observed dependencies by presenting the frequency of micronuclei formation under the same irradiation conditions as a marker of radiation-induced genomic instability. We believe that the data and analysis presented here shed light on the kinetics of DNA repair under chronic radiation and are useful for future studies in the low-to-medium dose rate range.


Author(s):  
Andrea Borghini ◽  
Cecilia Vecoli ◽  
Luca Labate ◽  
Daniele Panetta ◽  
Maria Grazia Andreassi ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Paula V. Bennett ◽  
Alicia M. Johnson ◽  
Sarah E. Ackerman ◽  
Pankaj Chaudhary ◽  
Deborah J. Keszenman ◽  
...  

We report on effects of low-dose exposures of accelerated protons delivered at high-dose rate (HDR) or a simulated solar-particle event (SPE) like low-dose rate (LDR) on immediate DNA damage induction and processing, survival and in vitro transformation of low passage NFF28 apparently normal primary human fibroblasts. Cultures were exposed to 50, 100 and 1,000 MeV monoenergetic protons in the Bragg entrance/plateau region and cesium-137 γ rays at 20 Gy/h (HDR) or 1 Gy/h (LDR). DNA double-strand breaks (DSB) and clustered DNA damages (containing oxypurines and abasic sites) were measured using transverse alternating gel electrophoresis (TAFE) and immunocytochemical detection/scoring of colocalized γ-H2AX pS139/53BP1 foci, with their induction being linear energy transfer (LET) dependent and dose-rate sparing observed for the different damage classes. Relative biological effectiveness (RBE) values for cell survival after proton irradiation at both dose-rates ranged from 0.61–0.73. Transformation RBE values were dose-rate dependent, ranging from ∼1.8–3.1 and ∼0.6–1.0 at low doses (≤30 cGy) for HDR and LDR irradiations, respectively. However peak transformation frequencies were significantly higher (1.3–7.3-fold) for higher doses of 0.5–1 Gy delivered at SPE-like LDR. Cell survival and transformation frequencies measured after low-dose 500 MeV/n He-4, 290 MeV/n C-12 and 600 MeV/n Si-28 ion irradiations also showed an inverse dose-rate effect for transformation at SPE-like LDR. This work demonstrates the existence of inverse dose-rate effects for proton and light-ion-induced postirradiation cell survival and in vitro transformation for space mission-relevant doses and dose rates.


Sign in / Sign up

Export Citation Format

Share Document