scholarly journals South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica

2022 ◽  
Vol 292 ◽  
pp. 118358
Author(s):  
Seanan Wild ◽  
Igor Eulaers ◽  
Adrian Covaci ◽  
Rossana Bossi ◽  
Darryl Hawker ◽  
...  
2022 ◽  
Vol 11 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Islam A. Abdelhafeez ◽  
Sayed A. El-Tohamy ◽  
Mokhtar A. Abd ul-Malik ◽  
Shaban A. A. Abdel-Raheem ◽  
Farida M.S. El-Dar

Organic pollutants cause many environmental problems to our environment because of their toxicity, non-degradation and ability to long-range transport. The most common organic pollutants are known as persistent organic pollutants (POPs) and are known as hydrocarbons. Effective techniques for the removal of hydrocarbons and heavy metals from soil have drawn great attention. Remediation techniques represent one of the most important of these techniques because of their gentle impact on the environment. The study highlights numerous methods for Physical and chemical remediation techniques with explanation of the ability of some plants and agricultural wastes for remediation.


2000 ◽  
Vol 34 (4) ◽  
pp. 699-703 ◽  
Author(s):  
Andreas Beyer ◽  
Donald Mackay ◽  
Michael Matthies ◽  
Frank Wania ◽  
Eva Webster

2013 ◽  
Vol 13 (14) ◽  
pp. 6983-6992 ◽  
Author(s):  
R. Kallenborn ◽  
K. Breivik ◽  
S. Eckhardt ◽  
C. R. Lunder ◽  
S. Manø ◽  
...  

Abstract. A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007–2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m−3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).


2004 ◽  
Vol 11 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Martin Scheringer ◽  
Maximilian Stroebe ◽  
Frank Wania ◽  
Fabio Wegmann ◽  
Konrad Hungerbühler

2013 ◽  
Vol 13 (3) ◽  
pp. 6219-6246 ◽  
Author(s):  
R. Kallenborn ◽  
K. Breivik ◽  
S. Eckhardt ◽  
C. R . Lunder ◽  
S. Manø ◽  
...  

Abstract. A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007–2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m−3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.


2005 ◽  
Vol 17 (2) ◽  
pp. 121-121
Author(s):  
Martin Scheringer ◽  
Maximilian Stroebe ◽  
Frank Wania ◽  
Fabio Wegmann ◽  
Konrad Hungerbühler

Sign in / Sign up

Export Citation Format

Share Document