Visible light driven reduced graphene oxide supported ZnMgAl LTH/ZnO/g-C3N4 nanohybrid photocatalyst with notable two-dimension formation for enhanced photocatalytic activity towards organic dye degradation

2021 ◽  
Vol 197 ◽  
pp. 111079
Author(s):  
K. Bhuvaneswari ◽  
G. Palanisamy ◽  
G. Bharathi ◽  
T. Pazhanivel ◽  
Indra Raj Upadhyaya ◽  
...  
2014 ◽  
Vol 07 (02) ◽  
pp. 1450013 ◽  
Author(s):  
Jie Zhu ◽  
Wanhong He ◽  
Lu Zhang ◽  
Xu Xiang ◽  
Zhiwei Li

A new protocol was developed to obtain a composite photocatalyst by incorporating indium to ZnO and subsequently assembling it with reduced graphene oxide (RGO) sheets. The incorporation of indium led to lattice distortion of ZnO and introduction of defect levels. The hybridization with RGO could improve the electron transport and extend the lifetime of photo-generated carriers, leading to enhanced activity for dye degradation driven by visible light. The photocatalytic activity appeared to be dependent on the relative quantity of RGO. The optimized quantity resulted in the highest activity due to the dual role of electron shuttle and "shielding effect" of RGO. In addition, the composite photocatalyst exhibited excellent repeatable use performance, suggestive of its high stability. This study proposed a promising strategy to construct photocatalysts by rational bandgap engineering and tunable composite technology.


2015 ◽  
Vol 44 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Soumen Dutta ◽  
Ramakrishna Sahoo ◽  
Chaiti Ray ◽  
Sougata Sarkar ◽  
Jayasmita Jana ◽  
...  

Charge recombination in yellow CdS has been overcome by rGO and interfacial TiO2 to show maximum visible-light-driven photocatalytic activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xiao ◽  
Wenjie Zhou ◽  
Yanhua Zhang ◽  
Liangliang Tian ◽  
Hongdong Liu ◽  
...  

A series of three-dimensional ZnxCd1-xS/reduced graphene oxide (ZnxCd1-xS/RGO) hybrid aerogels was successfully synthesized based on a one-pot hydrothermal approach, which were subsequently used as visible-light-driven photocatalysts for photoreduction of Cr(VI) in water. Over 95% of Cr(VI) was photoreduced by Zn0.5Cd0.5S/RGO aerogel material within 140 min, and such photocatalytic performance was superior to that of other ZnxCd1-xS/RGO aerogel materials (x≠0.5) and bare Zn0.5Cd0.5S. It was assumed that the enhanced photocatalytic activity of Zn0.5Cd0.5S/RGO aerogel was attributed to its high specific surface area and the preferable synergetic catalytic effect between Zn0.5Cd0.5S and RGO. Besides, Zn0.5Cd0.5S/RGO aerogel materials were robust and durable enough so that they could be reused several times with merely limited loss of photocatalytic activity. The chemical composition, phase, structure, and morphology of Zn0.5Cd0.5S/RGO aerogel material were carefully examined by a number of techniques like XRD, SEM, TEM, BET, Raman characterizations, and so on. It was found that Zn0.5Cd0.5S/RGO aerogel possessed hierarchically porous architecture with the specific surface area as high as 260.8 m2 g−1. The Zn0.5Cd0.5S component incorporated in Zn0.5Cd0.5S/RGO aerogel existed in the form of solid solution nanoparticles, which were uniformly distributed in the RGO matrix.


RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22500-22514
Author(s):  
Amir Hossein Cheshme Khavar ◽  
Gholamreza Moussavi ◽  
Kamyar Yaghmaeian ◽  
Ali Reza Mahjoub ◽  
Neda Khedri ◽  
...  

TiO2 is one of the most widely used semiconductors for photocatalytic reactions.


Sign in / Sign up

Export Citation Format

Share Document