scholarly journals Three-Dimensional Zn0.5Cd0.5S/Reduced Graphene Oxide Hybrid Aerogel: Facile Synthesis and the Visible-Light-Driven Photocatalytic Property for Reduction of Cr(VI) in Water

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xiao ◽  
Wenjie Zhou ◽  
Yanhua Zhang ◽  
Liangliang Tian ◽  
Hongdong Liu ◽  
...  

A series of three-dimensional ZnxCd1-xS/reduced graphene oxide (ZnxCd1-xS/RGO) hybrid aerogels was successfully synthesized based on a one-pot hydrothermal approach, which were subsequently used as visible-light-driven photocatalysts for photoreduction of Cr(VI) in water. Over 95% of Cr(VI) was photoreduced by Zn0.5Cd0.5S/RGO aerogel material within 140 min, and such photocatalytic performance was superior to that of other ZnxCd1-xS/RGO aerogel materials (x≠0.5) and bare Zn0.5Cd0.5S. It was assumed that the enhanced photocatalytic activity of Zn0.5Cd0.5S/RGO aerogel was attributed to its high specific surface area and the preferable synergetic catalytic effect between Zn0.5Cd0.5S and RGO. Besides, Zn0.5Cd0.5S/RGO aerogel materials were robust and durable enough so that they could be reused several times with merely limited loss of photocatalytic activity. The chemical composition, phase, structure, and morphology of Zn0.5Cd0.5S/RGO aerogel material were carefully examined by a number of techniques like XRD, SEM, TEM, BET, Raman characterizations, and so on. It was found that Zn0.5Cd0.5S/RGO aerogel possessed hierarchically porous architecture with the specific surface area as high as 260.8 m2 g−1. The Zn0.5Cd0.5S component incorporated in Zn0.5Cd0.5S/RGO aerogel existed in the form of solid solution nanoparticles, which were uniformly distributed in the RGO matrix.

2018 ◽  
Vol 52 (22) ◽  
pp. 3015-3025 ◽  
Author(s):  
Daeyoung Kim ◽  
Heon Kang ◽  
Donghyun Bae ◽  
Seungjin Nam ◽  
Manuel Quevedo-Lopez ◽  
...  

The present study employed a combination of solution-based synthesis and mechanical milling to develop reduced graphene oxide/aluminum composites, in order to achieve uniform dispersion of reduced graphene oxide and strong interfaces between reduced graphene oxide and aluminum. First, spherical aluminum powder was flattened via mechanical milling to afford a large specific surface area and many reaction sites for the graphene oxide. A hydrophilic surface was then created by coating the aluminum powder with polyvinyl alcohol. The polyvinyl alcohol-coated aluminum slurry was mixed with a graphene oxide suspension, thereby inducing a reaction between graphene oxide and polyvinyl alcohol via hydrogen bonding. After thermal reduction, the composite powder was further ball milled and hot-pressed at 500℃ to produce a reduced graphene oxide/aluminum composite. The dispersion of reduced graphene oxide in the composite, as well as the mechanical and thermal behaviors of the composite, improved with increased flattening and specific surface area of the starting aluminum powder.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


Nanoscale ◽  
2016 ◽  
Vol 8 (41) ◽  
pp. 17782-17787 ◽  
Author(s):  
Amira Alazmi ◽  
Omar El Tall ◽  
Shahid Rasul ◽  
Mohamed N. Hedhili ◽  
Shashikant P. Patole ◽  
...  

2015 ◽  
Vol 44 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Soumen Dutta ◽  
Ramakrishna Sahoo ◽  
Chaiti Ray ◽  
Sougata Sarkar ◽  
Jayasmita Jana ◽  
...  

Charge recombination in yellow CdS has been overcome by rGO and interfacial TiO2 to show maximum visible-light-driven photocatalytic activity.


2015 ◽  
Vol 17 (7) ◽  
pp. 3972-3978 ◽  
Author(s):  
Kyeong Min Cho ◽  
Kyoung Hwan Kim ◽  
Hyung Ouk Choi ◽  
Hee-Tae Jung

In this paper, we have reported a new, visible-light-driven photocatalyst composed of 2D mesoporous TiO2 on reduced graphene oxide, which enables enhanced absorption of visible light, showing outstanding charge separation ability, and a large surface area.


RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22500-22514
Author(s):  
Amir Hossein Cheshme Khavar ◽  
Gholamreza Moussavi ◽  
Kamyar Yaghmaeian ◽  
Ali Reza Mahjoub ◽  
Neda Khedri ◽  
...  

TiO2 is one of the most widely used semiconductors for photocatalytic reactions.


Sign in / Sign up

Export Citation Format

Share Document