Groundwater remediation optimization using a point collocation method and particle swarm optimization

2012 ◽  
Vol 32 ◽  
pp. 37-48 ◽  
Author(s):  
M. Mategaonkar ◽  
T.I. Eldho
2018 ◽  
Vol 20 (4) ◽  
pp. 886-897 ◽  
Author(s):  
Meenal Mategaonkar ◽  
T. I. Eldho ◽  
Sahajanand Kamat

Abstract Groundwater contamination due to contaminants like trichloroethylene (TCE), tetrachloroethylene, dichloroethylene, phenol, etc., is an alarming concern for most of the manufacturing areas. It is important to identify the type of pollutant, concentration, location, and direction of the contaminant plume for groundwater remediation. Bioremediation has been identified as one of the important remediation techniques for these types of contaminants. Bioremediation modeling comprises solutions to biodegradation equations and fixing the time of remediation and locating the oxygen injection wells. In this study, a simulation-optimization (S/O) model based on the coupled meshfree point collocation method (MFree-PCM) and particle swarm optimization (PSO) is proposed for in-situ bioremediation design. The in-situ bioremediation process of groundwater contamination is explored using the developed PCM-BIO-PSO multi-objective model with different strategies of minimization of cost, number of wells and time of remediation. The proposed model can be effectively used for the in-situ bioremediation design of contaminated sites.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sign in / Sign up

Export Citation Format

Share Document