Significance of a family-6 carbohydrate-binding module in a modular feruloyl esterase for removing ferulic acid from insoluble wheat arabinoxylan

2020 ◽  
Vol 138 ◽  
pp. 109546
Author(s):  
Ai Mamiya ◽  
Makiko Sakka ◽  
Akihiko Kosugi ◽  
Hirotaka Katsuzaki ◽  
Akiyoshi Tanaka ◽  
...  
2005 ◽  
Vol 71 (12) ◽  
pp. 8132-8140 ◽  
Author(s):  
Anthony Levasseur ◽  
David Navarro ◽  
Peter J. Punt ◽  
Jean-Pierre Belaïch ◽  
Marcel Asther ◽  
...  

ABSTRACT Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates.


2019 ◽  
Vol 294 (46) ◽  
pp. 17339-17353 ◽  
Author(s):  
Jesper Holck ◽  
Folmer Fredslund ◽  
Marie S. Møller ◽  
Jesper Brask ◽  
Kristian B. R. M. Krogh ◽  
...  

Feruloyl esterases (EC 3.1.1.73), belonging to carbohydrate esterase family 1 (CE1), hydrolyze ester bonds between ferulic acid (FA) and arabinose moieties in arabinoxylans. Recently, some CE1 enzymes identified in metagenomics studies have been predicted to contain a family 48 carbohydrate-binding module (CBM48), a CBM family associated with starch binding. Two of these CE1s, wastewater treatment sludge (wts) Fae1A and wtsFae1B isolated from wastewater treatment surplus sludge, have a cognate CBM48 domain and are feruloyl esterases, and wtsFae1A binds arabinoxylan. Here, we show that wtsFae1B also binds to arabinoxylan and that neither binds starch. Surface plasmon resonance analysis revealed that wtsFae1B's Kd for xylohexaose is 14.8 μm and that it does not bind to starch mimics, β-cyclodextrin, or maltohexaose. Interestingly, in the absence of CBM48 domains, the CE1 regions from wtsFae1A and wtsFae1B did not bind arabinoxylan and were also unable to catalyze FA release from arabinoxylan. Pretreatment with a β-d-1,4-xylanase did enable CE1 domain-mediated FA release from arabinoxylan in the absence of CBM48, indicating that CBM48 is essential for the CE1 activity on the polysaccharide. Crystal structures of wtsFae1A (at 1.63 Å resolution) and wtsFae1B (1.98 Å) revealed that both are folded proteins comprising structurally-conserved hydrogen bonds that lock the CBM48 position relative to that of the CE1 domain. wtsFae1A docking indicated that both enzymes accommodate the arabinoxylan backbone in a cleft at the CE1–CBM48 domain interface. Binding at this cleft appears to enable CE1 activities on polymeric arabinoxylan, illustrating an unexpected and crucial role of CBM48 domains for accommodating arabinoxylan.


2009 ◽  
Vol 86 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Takuya Koseki ◽  
Keiji Mochizuki ◽  
Hiroe Kisara ◽  
Akimasa Miyanaga ◽  
Shinya Fushinobu ◽  
...  

FEBS Journal ◽  
2015 ◽  
Vol 282 (22) ◽  
pp. 4341-4356 ◽  
Author(s):  
Renee M. Happs ◽  
Xiaoyang Guan ◽  
Michael G. Resch ◽  
Mark F. Davis ◽  
Gregg T. Beckham ◽  
...  

2004 ◽  
Vol 238 (1) ◽  
pp. 71-78
Author(s):  
Fernando M.V. Dias ◽  
Arun Goyal ◽  
Harry J. Gilbert ◽  
José A.M. Prates ◽  
Luís M.A. Ferreira ◽  
...  

2000 ◽  
Vol 182 (5) ◽  
pp. 1346-1351 ◽  
Author(s):  
David L. Blum ◽  
Irina A. Kataeva ◽  
Xin-Liang Li ◽  
Lars G. Ljungdahl

ABSTRACT The cellulosome of Clostridium thermocellum is a multiprotein complex with endo- and exocellulase, xylanase, β-glucanase, and acetyl xylan esterase activities. XynY and XynZ, components of the cellulosome, are composed of several domains including xylanase domains and domains of unknown function (UDs). Database searches revealed that the C- and N-terminal UDs of XynY and XynZ, respectively, have sequence homology with the sequence of a feruloyl esterase of strain PC-2 of the anaerobic fungusOrpinomyces. Purified cellulosomes from C. thermocellum were found to hydrolyze FAXX (O-{5-O-[(E)-feruloyl]-α-l-arabinofuranosyl}-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose) and FAX3(5-O-[(E)-feruloyl]-[O-β-d-xylopyranosyl-(1→2)]-O-α-l-arabinofuranosyl-[1→3]}-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose), yielding ferulic acid as a product, indicating that they have feruloyl esterase activity. Nucleotide sequences corresponding to the UDs of XynY and XynZ were cloned into Escherichia coli, and the expressed proteins hydrolyzed FAXX and FAX3. The recombinant feruloyl esterase domain of XynZ alone (FAEXynZ) and with the adjacent cellulose binding domain (FAE-CBDXynZ) were characterized. FAE-CBDXynZhad a molecular mass of 45 kDa that corresponded to the expected product of the 1,203-bp gene. Km andV max values for FAX3 were 5 mM and 12.5 U/mg, respectively, at pH 6.0 and 60°C. PAX3, a substrate similar to FAX3 but with ap-coumaroyl group instead of a feruloyl moiety was hydrolyzed at a rate 10 times slower. The recombinant enzyme was active between pH 3 to 10 with an optimum between pH 4 to 7 and at temperatures up to 70°C. Treatment of Coastal Bermuda grass with the enzyme released mainly ferulic acid and a lower amount ofp-coumaric acid. FAEXynZ had similar properties. Removal of the 40 C-terminal amino acids, residues 247 to 286, of FAEXynZ resulted in protein without activity. Feruloyl esterases are believed to aid in a release of lignin from hemicellulose and may be involved in lignin solubilization. The presence of feruloyl esterase in the C. thermocellumcellulosome together with its other hydrolytic activities demonstrates a powerful enzymatic potential of this organelle in plant cell wall decomposition.


2010 ◽  
Vol 192 (24) ◽  
pp. 6492-6493 ◽  
Author(s):  
Angel Angelov ◽  
Susanne Liebl ◽  
Meike Ballschmiter ◽  
Mechthild Bömeke ◽  
Rüdiger Lehmann ◽  
...  

ABSTRACT Spirochaeta thermophila is a thermophilic, free-living anaerobe that is able to degrade various α- and β-linked sugar polymers, including cellulose. We report here the complete genome sequence of S. thermophila DSM 6192, which is the first genome sequence of a thermophilic, free-living member of the Spirochaetes phylum. The genome data reveal a high density of genes encoding enzymes from more than 30 glycoside hydrolase families, a noncellulosomal enzyme system for (hemi)cellulose degradation, and indicate the presence of a novel carbohydrate-binding module.


Sign in / Sign up

Export Citation Format

Share Document