carbohydrate binding module
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 54)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Takumi Takeda ◽  
Machiko Takahashi ◽  
Motoki Shimizu ◽  
Yu Sugihara ◽  
Hiromasa Saitoh ◽  
...  

When infecting plants, fungal pathogens secrete cell wall degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsCBMIP binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsCBMIP to various CBM1-containing enzymes, suggesting it has a general role in inhibiting the catalytic activities of fungal enzymes. OsCBMIP is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown of OsCBMIP reduced rice defense against M. oryzae, demonstrating that inhibition of CBM1-containing fungal enzymes by OsCBMIP is crucial for rice defense. We also identified additional CBMIP-related proteins from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hyunjun Ko ◽  
Minsik Kang ◽  
Mi-Jin Kim ◽  
Jiyeon Yi ◽  
Jin Kang ◽  
...  

Abstract Background Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. Results A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. Conclusions The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


2021 ◽  
Vol 273 ◽  
pp. 118609
Author(s):  
Jianli Zhou ◽  
Jean Damascene Harindintwali ◽  
Wenhua Yang ◽  
Minghai Han ◽  
Bin Deng ◽  
...  

2021 ◽  
pp. 118748
Author(s):  
Xuanwei Mei ◽  
Yaoguang Chang ◽  
Jingjing Shen ◽  
Yuying Zhang ◽  
Guangning Chen ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1179
Author(s):  
Reinaldo Fraga Vidal ◽  
Roberto Carlos Arísticas Ribalta ◽  
Lisandra Teresa Martínez Valdés ◽  
Meinardo Lafargue Gámez ◽  
Amanda Montes Alvarez ◽  
...  

Lactic acid bacteria (LAB) have the potential to produce homoexopolysaccharides (HoPS). Their health benefits and physicochemical properties have been the subject of extensive research. The HoPS functional properties are determined by molecular weight, the type of glycosidic linkages, degrees of branching and chemical composition. The dextransucrases (DSases) produce a kind of HoPS (dextrans), which are among the first biopolymers produced at industrial scale with applications in medicine and biotechnology. The glycodiversification opens additional applications for DSases. Therefore, the design and characterization of new DSases is of prime importance. Previously, we described the isolation and characterization of a novel extracellular dextransucrase (DSR-F) encoding gene. In this study, from DSR-F, we design a novel chimeric dextransucrase DSR-F-∆SP-∆GBD-CBM2a, where DSR-F-∆SP-∆GBD (APY repeats and a CW repeat deleted) was fused to the carbohydrate-binding module (CBM2a) of the β-1-4 exoglucanase/xylanase Cex (Xyn10A) of Cellulomonas fimi ATCC 484. This dextransucrase variant is active and the specificity is not altered. The DSR-F-∆SP-∆GBD-CBM2a was purified by cellulose affinity chromatography for the first time. This research showed that hybrids and chimeric biocatalyst DSases with novel binding capacity to cellulose can be designed to purify and immobilize using renewable lignocellulosic materials as supports.


Author(s):  
Nitipol POLSA ◽  
Chomphunuch SONGSIRIRITTHIGUL ◽  
Wasana SUYOTHA ◽  
Sugunya SUEBSAN ◽  
Somboon ANUNTALABHOCHAI ◽  
...  

From our earlier work, we modified the carbohydrate-binding module (CBM) of Bacillus amyloliquefaciens to increase cellulase activity using cold plasma technology. The cellulase gene (BglC-M) from the mutant was expressed in Escherichia coli BL21(DE3) under the T7 promoter. The hydrolysis activity of the cellulase mutant (BglC-M) was approximately 2.5-fold higher than the control (BglC-W) over a wide range of pH and temperature conditions. The amino acid sequence of the mutant BglC-M contained 471 residues that were almost identical to the control BglC-W. Only a single amino acid, lysine, was replaced by glutamic acid at position 370 (K370E) within the carbohydrate-binding module (CBM). Structure prediction and substrate docking of BglC-M indicated that the single mutation (K370E) might involve cellulose binding of the β-sandwich facilitated by hydrogen bonding. The docking study of cellopentaose with the model structure of BglC-M indicated that the replacement of lysine-370 led to the formation of a hydrogen bond with 436Y, which has a shorter distance (2.6 Å) compared with the control (5.4 Å). As a result, the structure becomes more compact and stable, resulting in increased catalytic efficiency. Finally, the biomass hydrolysis ability of cellulase was investigated on lignocellulosic wastes such as pineapple peel, corncob, and durian peel. The BglC-M enzyme showed a more significant amount of reducing sugar released from all lignocellulosic wastes than the control. This was the first evidence that altering the base composition of the cellulose binding module enhanced the catalytic activity. HIGHLIGHTS Increasing cellulase activity of Bacillus amyloliquefaciens using plasma technology Mutation at cellulose-binding module enhance cellulase hydrolysis activity Greater cellulase activity in the hydrolysis on lignocellulosic wastes GRAPHICAL ABSTRACT


Author(s):  
Reinaldo Fraga Vidal ◽  
Roberto Carlos Aristicas Ribalta ◽  
Lisandra Teresa Martínez Valdés ◽  
Meinardo Lafargue Gámez ◽  
Amanda Montes Alvarez ◽  
...  

The lactic acid bacteria (LAB) have great potential to produce homoexopolysaccharides (HoPS), have been the subject of extensive research efforts, given their health benefits and physicochemical properties. The HoPS functional properties are determined by structural characteristics of varied molecular weights, types of glycosidic linkages, degrees of branching and chemical composition. The dextransucrases (DSases) are responsible of the synthesis of a kind of HoPS (dextran polymers), which are among the first biopolymers produced at industrial scale with applications in medicine and biotechnology. The concept of glycodiversification opens additional applications for DSases. In that sense the design and characterization of new DSases is of prime importance. Previously, we described the isolation and characterization of a novel extracellular dextransucrase (DSR-F) encoding gene. In this study, from DSR-F, we design a novel chimeric dextransucrase DSR-F-∆SP-∆GBD-CBM2a, where DSR-F-∆SP-∆GBD is fused to the carbohydrate-binding module (CBM2a) of the β-1-4 exoglucanase/xylanase Cex (Xyn10A) of Cellulomonas fimi ATCC 484. This dextransucrase variant is active and without alteration in its specificity. The DSR-F-∆SP-∆GBD-CBM2a is purified by cellulose affinity chromatography for the very first time. Our results indicate that new hybrids and chimeric DSases with novel binding capacity to cellulose can be designed to obtain glyco-biocatalysts from renewable lignocellulosic materials.


2021 ◽  
Vol 16 (3) ◽  
pp. 191-199
Author(s):  
Wen Liu ◽  
Hiroshi Kamitakahara ◽  
Shingo Maegawa ◽  
Haruhiko Toyohara

2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Ding ◽  
Boyang Zhao ◽  
Xiaofeng Ban ◽  
Caiming Li ◽  
B. V. Venkataram Prasad ◽  
...  

Marine extremophiles produce cold-adapted and/or salt-tolerant enzymes to survive in harsh conditions. These enzymes are naturally evolved with unique structural features that confer a high level of flexibility, solubility and substrate-binding ability compared to mesophilic and thermostable homologs. Here, we identified and characterized an amylase, SdG5A, from the marine bacterium Saccharophagus degradans 2-40T. We expressed the protein in Bacillus subtilis and found that the purified SdG5A enabled highly specific production of maltopentaose, an important health-promoting food and nutrition component. Notably, SdG5A exhibited outstanding cold adaptation and salt tolerance, retaining approximately 30 and 70% of its maximum activity at 4°C and in 3 M NaCl, respectively. It converted 68 and 83% of starch into maltooligosaccharides at 4 and 25°C, respectively, within 24 h, with 79% of the yield being the maltopentaose. By analyzing the structure of SdG5A, we found that the C-terminal carbohydrate-binding module (CBM) coupled with an extended linker, displayed a relatively high negative charge density and superior conformational flexibility compared to the whole protein and the catalytic domain. Consistent with our bioinformatics analysis, truncation of the linker-CBM region resulted in a significant loss in activities at low temperature and high salt concentration. This highlights the linker-CBM acting as the critical component for the protein to carry out its activity in biologically unfavorable condition. Together, our study indicated that these unique properties of SdG5A have great potential for both basic research and industrial applications in food, biology, and medical and pharmaceutical fields.


Sign in / Sign up

Export Citation Format

Share Document