Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data

2011 ◽  
Vol 311 (3-4) ◽  
pp. 328-338 ◽  
Author(s):  
Stephan Schuth ◽  
Stephan König ◽  
Carsten Münker
2016 ◽  
Vol 31 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Martijn Klaver ◽  
Richard J. Smeets ◽  
Janne M. Koornneef ◽  
Gareth R. Davies ◽  
Pieter Z. Vroon

The use of a 1013 Ω amplifier to increase the 204Pb signal enables high-precision, double spike Pb isotope data to be obtained for ng-size Pb samples.


2020 ◽  
Vol 51 (1) ◽  
pp. 13-26 ◽  
Author(s):  
J. Collot ◽  
M. Patriat ◽  
R. Sutherland ◽  
S. Williams ◽  
D. Cluzel ◽  
...  

AbstractThe SW Pacific region consists of a succession of ridges and basins that were created by the fragmentation of Gondwana and the evolution of subduction zones since Mesozoic times. This complex geodynamic evolution shaped the geology of New Caledonia, which lies in the northern part of the Zealandia continent. Alternative tectonic models have been postulated. Most models agree that New Caledonia was situated on an active plate margin of eastern Gondwana during the Mesozoic. Extension affected the region from the Late Cretaceous to the Paleocene and models for this period vary in the location and nature of the plate boundary between the Pacific and Australian plates. Eocene regional tectonic contraction included the obduction of a mantle-derived Peridotite Nappe in New Caledonia. In one class of model, this contractional phase was controlled by an east-dipping subduction zone into which the Norfolk Ridge jammed, whereas and in a second class of model this phase corresponds to the initiation of the west-dipping Tonga–Kermadec subduction zone. Neogene tectonics of the region near New Caledonia was dominated by the eastwards retreat of Tonga–Kermadec subduction, leading to the opening of a back-arc basin east of New Caledonia, and the initiation and southwestwards advance of the New Hebrides–Vanuatu subduction zone towards New Caledonia.


2018 ◽  
Vol 216 (1) ◽  
pp. 609-620 ◽  
Author(s):  
Hongjian Fang ◽  
Huajian Yao ◽  
Haijiang Zhang ◽  
Clifford Thurber ◽  
Yehuda Ben-Zion ◽  
...  

2002 ◽  
Vol 188 (1-2) ◽  
pp. 65-83 ◽  
Author(s):  
Kenneth D. Collerson ◽  
Balz S. Kamber ◽  
Ronny Schoenberg

2016 ◽  
Vol 2 (7) ◽  
pp. e1600022 ◽  
Author(s):  
Lydian M. Boschman ◽  
Douwe J. J. van Hinsbergen

The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea.


Sign in / Sign up

Export Citation Format

Share Document