The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury

2013 ◽  
Vol 377-378 ◽  
pp. 62-72 ◽  
Author(s):  
A. Rivoldini ◽  
T. Van Hoolst
Icarus ◽  
2019 ◽  
Vol 321 ◽  
pp. 272-290 ◽  
Author(s):  
S. Le Maistre ◽  
A. Rivoldini ◽  
P. Rosenblatt

2021 ◽  
Author(s):  
Linda Geisser ◽  
Ulrich Meyer ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Daniela Thaller

<p>The Astronomical Institute of the University of Bern (AIUB) collaborates with the Federal Agency for Cartography and Geodesy (BKG) in Germany to develop new procedures to generate products for the International Laser Ranging Service (ILRS). In this framework the SLR processing of the standard ILRS weekly solutions of spherical geodetic satellites at AIUB, where the orbits are determined in 7-day arcs together with station coordinates and other geodetic parameters, is extended from LAGEOS-1/2 and the Etalon-1/2 satellites to also include the LARES satellite orbiting the Earth at much lower altitude. Since a lower orbit experiences a more variable enviroment, e.g. it is more sensitive to time-variable Earth's gravity field, the orbit parametrization has to be adapted and also the low degree spherical harmonic coefficients of Earth's gravity field have to be co-estimated. The impact of the gravity field estimation is studied by validating the quality of other geodetic parameters such as geocenter coordinates, Earth Rotation Parameters (ERPs) and station coordinates. The analysis of the influence of LARES on the SLR solution shows that a good datum definition is important.</p>


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 78-80 ◽  
Author(s):  
L. Iess ◽  
D. J. Stevenson ◽  
M. Parisi ◽  
D. Hemingway ◽  
R. A. Jacobson ◽  
...  

The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (106J2= 5435.2 ± 34.9, 106C22= 1549.8 ± 15.6, 1σ) and their ratio (J2/C22= 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR2, whereMis the mass andRis the radius, suggesting a differentiated body with a low-density core.


2020 ◽  
Author(s):  
Isamu Matsuyama ◽  
Antony Trinh

<p><span>We assess the gravity constraints on the interior structure of Europa in anticipation of the Europa Clipper mission.</span></p><p><span>Moore and Schubert (2000) illustrated that the diurnal tide amplitude, quantified by the diurnal (tidal) Love numbers, k<sub>2</sub><sup>d</sup> and h<sub>2</sub><sup>d</sup>, can be used to determine the presence of a subsurface liquid ocean due to the significant increase in tidal amplitudes associated with the mechanical decoupling of the shell with a subsurface ocean.<span>  </span>However, they considered a limited range of possible interior parameters except the ice shell rigidity, which was assumed to be in the range of 1-10 GPa. We consider a wider range of possible interior structure parameters and a more realistic ice shell rigidity range of 1-4 GPa. Inferring the presence of a subsurface ocean is slightly easier than previously thought (Verma & Margot 2018), with required absolute precisions of 0.08 for k<sub>2</sub><sup>d</sup> , and 0.44 for h<sub>2</sub><sup>d</sup> .</span></p><p><span>Previous work have considered diurnal (tidal) gravity constraints alone or static gravity constraints alone using a forward modeling approach (e.g.<span>  </span>Anderson et al., 1998; Moore and Schubert, 2000; Wahr et al., 2006). We evaluate constraints on interior structure parameters using Bayesian inversion with the mass, static gravity, and diurnal gravity as constraints, allowing a probabilistic view of Europa's interior structure. Given the same relative uncertainties, the static Love numbers provide stronger constraints on the interior structure relative to those from the mean moment of inertia (MOI). Additionally, the static Love numbers can be inferred directly from the static gravity field whereas inferring the MOI requires the Radau-Darwin approximation.</span></p><p><span>Jointly considered with the static shape, the static gravity field can constrain the average and long-wavelength thickness of the shell. For an isostatically compensated shell, it is usual to conceptualize the crust as a series of independently floating columns of equal cross-sectional area which, by application of Archimedes' principle, should have equal mass above the depth of compensation. However, this approach is unphysical in the presence of curvature and self-gravitation. We consider alternative prescriptions of Airy isostasy: the equal-pressure prescription (Hemingway and Matsuyama, 2017), and the minimum-stress prescription (Dahlen 1982; Beuthe et al., 2016; Trinh et al., 2019).<span>  </span>The gravitational coefficients are more sensitive to shell thickness than would be expected from the classical (equal-mass) approach, illustrating that the equal-mass prescription can lead to large errors in the inferred average shell thickness and its lateral variations.</span></p><p><span>Diurnal gravity data alone can only constrain the product of the shell rigidity and thickness (Moore and Schubert, 2000; Wahr et al., 2006). An additional observational constraint that is sensitive to these parameters is the libration amplitude, which can be obtained from direct imaging or from altimeter data. We show that a joint gravity and libration analysis is able to separately constrain the shell thickness and rigidity.</span></p>


Icarus ◽  
2020 ◽  
pp. 114187
Author(s):  
Luis Gomez Casajus ◽  
Marco Zannoni ◽  
Dario Modenini ◽  
Paolo Tortora ◽  
Francis Nimmo ◽  
...  

2021 ◽  
Author(s):  
Daniele Durante ◽  
Luciano Iess

<p>As of April 2021, Juno is close to complete its nominal mission, awaiting to enter its extended mission. Thanks to the extremely accurate Doppler data (having an accuracy as low as 10 micron/s at an integration time of 60 s) acquired during close perijove passes in the last 4 years, Juno provided an unprecedented view of Jupiter’s gravity field, which is crucial to determine its interior structure. In order to recover the gravity field of the planet, the orbits of Juno have to be reconstructed to a very high accuracy. The latest gravity field reconstruction showed hints to a non-static and/or non-axially symmetric field, possibly related to several different phenomena, such as normal modes, localized atmospheric or deeply-rooted dynamics. These tiny phenomena produces a residual signal at a level of few tens of micron/s in Juno Doppler data. To confidently study these tiny unconventional phenomena, the dynamical model of Juno’s spacecraft have been accurately characterized and possible error sources investigated and ruled out.</p><p>The focus of this study is Jupiter’s normal modes. Our main goal is to assess whether the residuals signatures can be explained by the gravitational disturbances induced by normal modes inside the planet, assuming reasonable physical constraints. Ground-based observations of Jupiter’ normal modes can be used as a guide.</p>


2012 ◽  
Vol 2 (1) ◽  
pp. 40-41
Author(s):  
Y. Wang

Reply to Comments to X. Li and Y. M. Wang (2011) Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications, JGS 1(2): 136-142 by L. E. SjöbergThe authors thank professor Sjöberg for having interest in our paper. The main goal of the paper is to test kernel modification methods used in geoid computations. Our tests found that Vanicek/Kleusberg's and Featherstone's methods fit the GPS/leveling data the best in the relative sense at various cap sizes. At the same time, we also pointed out that their methods are unstable and the mean values change from dm to meters by just changing the cap size. By contrast, the modification of the Wong and Gore type (including the spectral combination, method of Heck and Grüninger) is stable and insensitive to the truncation degree and cap size. This feature is especially useful when we know the accuracy of the gravity field at different frequency bands. For instance, it is advisable to truncate Stokes' kernel at a degree to which the satellite model is believed to be more accurate than surface data. The method of the Wong and Goretype does this job quite well. In contrast, the low degrees of Stokes' kernel are modified by Molodensky's coefficients tn in Vanicek/Kleusberg's and Featherstone's methods (cf. Eq. (6) in Li and Wang (2011)). It implies that the low degree gravity field of the reference model will be altered by less accurate surface data in the final geoid. This is also the cause of the larger variation in mean values of the geoid.


2001 ◽  
Vol 106 (E12) ◽  
pp. 32963-32969 ◽  
Author(s):  
John D. Anderson ◽  
Robert A. Jacobson ◽  
Eunice L. Lau ◽  
William B. Moore ◽  
Gerald Schubert

Sign in / Sign up

Export Citation Format

Share Document