Gravity constraints on the interior structure of Europa

Author(s):  
Isamu Matsuyama ◽  
Antony Trinh

<p><span>We assess the gravity constraints on the interior structure of Europa in anticipation of the Europa Clipper mission.</span></p><p><span>Moore and Schubert (2000) illustrated that the diurnal tide amplitude, quantified by the diurnal (tidal) Love numbers, k<sub>2</sub><sup>d</sup> and h<sub>2</sub><sup>d</sup>, can be used to determine the presence of a subsurface liquid ocean due to the significant increase in tidal amplitudes associated with the mechanical decoupling of the shell with a subsurface ocean.<span>  </span>However, they considered a limited range of possible interior parameters except the ice shell rigidity, which was assumed to be in the range of 1-10 GPa. We consider a wider range of possible interior structure parameters and a more realistic ice shell rigidity range of 1-4 GPa. Inferring the presence of a subsurface ocean is slightly easier than previously thought (Verma & Margot 2018), with required absolute precisions of 0.08 for k<sub>2</sub><sup>d</sup> , and 0.44 for h<sub>2</sub><sup>d</sup> .</span></p><p><span>Previous work have considered diurnal (tidal) gravity constraints alone or static gravity constraints alone using a forward modeling approach (e.g.<span>  </span>Anderson et al., 1998; Moore and Schubert, 2000; Wahr et al., 2006). We evaluate constraints on interior structure parameters using Bayesian inversion with the mass, static gravity, and diurnal gravity as constraints, allowing a probabilistic view of Europa's interior structure. Given the same relative uncertainties, the static Love numbers provide stronger constraints on the interior structure relative to those from the mean moment of inertia (MOI). Additionally, the static Love numbers can be inferred directly from the static gravity field whereas inferring the MOI requires the Radau-Darwin approximation.</span></p><p><span>Jointly considered with the static shape, the static gravity field can constrain the average and long-wavelength thickness of the shell. For an isostatically compensated shell, it is usual to conceptualize the crust as a series of independently floating columns of equal cross-sectional area which, by application of Archimedes' principle, should have equal mass above the depth of compensation. However, this approach is unphysical in the presence of curvature and self-gravitation. We consider alternative prescriptions of Airy isostasy: the equal-pressure prescription (Hemingway and Matsuyama, 2017), and the minimum-stress prescription (Dahlen 1982; Beuthe et al., 2016; Trinh et al., 2019).<span>  </span>The gravitational coefficients are more sensitive to shell thickness than would be expected from the classical (equal-mass) approach, illustrating that the equal-mass prescription can lead to large errors in the inferred average shell thickness and its lateral variations.</span></p><p><span>Diurnal gravity data alone can only constrain the product of the shell rigidity and thickness (Moore and Schubert, 2000; Wahr et al., 2006). An additional observational constraint that is sensitive to these parameters is the libration amplitude, which can be obtained from direct imaging or from altimeter data. We show that a joint gravity and libration analysis is able to separately constrain the shell thickness and rigidity.</span></p>

2021 ◽  
Author(s):  
Daniele Durante ◽  
Luciano Iess

<p>As of April 2021, Juno is close to complete its nominal mission, awaiting to enter its extended mission. Thanks to the extremely accurate Doppler data (having an accuracy as low as 10 micron/s at an integration time of 60 s) acquired during close perijove passes in the last 4 years, Juno provided an unprecedented view of Jupiter’s gravity field, which is crucial to determine its interior structure. In order to recover the gravity field of the planet, the orbits of Juno have to be reconstructed to a very high accuracy. The latest gravity field reconstruction showed hints to a non-static and/or non-axially symmetric field, possibly related to several different phenomena, such as normal modes, localized atmospheric or deeply-rooted dynamics. These tiny phenomena produces a residual signal at a level of few tens of micron/s in Juno Doppler data. To confidently study these tiny unconventional phenomena, the dynamical model of Juno’s spacecraft have been accurately characterized and possible error sources investigated and ruled out.</p><p>The focus of this study is Jupiter’s normal modes. Our main goal is to assess whether the residuals signatures can be explained by the gravitational disturbances induced by normal modes inside the planet, assuming reasonable physical constraints. Ground-based observations of Jupiter’ normal modes can be used as a guide.</p>


2020 ◽  
Vol 10 (4) ◽  
pp. 1466
Author(s):  
Kwang Bae Kim ◽  
Hong Sik Yun ◽  
Ha Jung Choi

Precise geoid heights are not as important for understanding Earth’s gravity field, but they are important to geodesy itself, since the vertical datum is defined as geoid in a cm-level accuracy. Several high-degree geopotential models have been derived lately by using satellite tracking data such as those from Gravity Recovery and Climate Experiment (GRACE) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), satellite altimeter data, and terrestrial and airborne gravity data. The Korean national geoid (KNGeoid) models of the National Geographic Information Institute (NGII) were developed using the latest global geopotential models (GGMs), which are combinations of gravity data from satellites and land gravity data. In this study, geoid heights calculated from the latest high-degree GGMs were used to evaluate the accuracy of the three GGMs (European Improved Gravity model of Earth by New techniques (EIGEN)-6C4, Earth Gravitational Model 2008 (EGM2008), and GOCE-EGM2008 combined model (GECO)) by comparing them with the geoid heights derived from the Global Navigation Satellite System (GNSS)/leveling of the 1182 unified control points (UCPs) that have been installed by NGII in South Korea since 2008. In addition, the geoid heights derived from the KNGeoid models were compared with the geoid heights derived from the GNSS/leveling of the 1182 UCPs to assess the accuracy of the KNGeoid models in terms of relative geoid heights for further gravimetric geoid determination studies in South Korea. As a result, the EGM2008 model could be selected as the suitable GGM from among the three GGMs for determining a gravimetric geoid model for South Korea.


2014 ◽  
Vol 9 (S310) ◽  
pp. 17-20 ◽  
Author(s):  
Benoît Noyelles ◽  
Francis Nimmo

AbstractThe Saturnian satellite Titan is one of the main targets of the Cassini-Huygens mission, which revealed in particular Titan's shape, gravity field, and rotation state. The shape and gravity field suggest that Titan is not in hydrostatic equilibrium, that it has a global subsurface ocean, and that its ice shell is both rigid (at tidal periods) and of variable thickness. The rotational state of Titan consists of an expected synchronous rotation rate and an unexpectedly high obliquity (0.3○) explained by Baland et al. (2011) to be a resonant behavior. We here combine a realistic model of the ice shell and interior and a 6-degrees of freedom rotational model, in which the librations, obliquity and polar motion of the rigid core and of the shell are modelled, to constrain the structure of Titan from the observations. We consider the gravitational pull of Saturn on the 2 rigid layers, the gravitational coupling between them, and the pressure coupling at the liquid-solid interfaces.We confirm the influence of the resonance found by Baland et al., that affects between 10 and 13% of the possible Titans. It is due to the 29.5-year periodic annual forcing. The resonant Titans can be obtained in situations in which a mass anomaly at the shell-ocean boundary (bottom loading) is from 80 to 92% compensated. This suggests a 250 to 280 km thick ocean below a 130 to 140 km thick shell, and is consistent with the degree-3 analysis of Hemingway 26 et al. (2013).


Icarus ◽  
2021 ◽  
pp. 114617
Author(s):  
Ross R. Maguire ◽  
Nicholas C. Schmerr ◽  
Vedran Lekic ◽  
Terry A. Hurford ◽  
Lenore Dai ◽  
...  

Astrobiology ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 941-954 ◽  
Author(s):  
Marie Běhounková ◽  
Ondřej Souček ◽  
Jaroslav Hron ◽  
Ondřej Čadek

Icarus ◽  
2019 ◽  
Vol 321 ◽  
pp. 272-290 ◽  
Author(s):  
S. Le Maistre ◽  
A. Rivoldini ◽  
P. Rosenblatt

2020 ◽  
Author(s):  
Arcangela Bollino ◽  
Anna Maria Marotta ◽  
Federica Restelli ◽  
Alessandro Regorda ◽  
Roberto Sabadini

<p>Subduction is responsible for surface displacements and deep mass redistribution. This rearrangement generates density anomalies in a wide spectrum of wavelengths which, in turn, causes important anomalies in the Earth's gravity field that are visible as lineaments parallel to the arc-trench systems. In these areas, when the traditional analysis of the deformation and stress fields is combined with the analysis of the perturbation of the gravity field and its slow time variation, new information on the background environment controlling the tectonic loading phase can be disclosed.</p><p>Here we present the results of a comparative analysis between the geodetically retrieved gravitational anomalies, based on the EIGEN-6C4 model, and those predicted by a 2D thermo-chemical mechanical modeling of the Sumatra and Mariana complexes.</p><p>The 2D model accounts for a wide range of parameters, such as the convergence velocity, the shallow dip angle, the different degrees of coupling between the facing plates. The marker in cell technique is used to compositionally differentiate the system. Phase changes in the crust and in the mantle and mantle hydration are also allowed. To be compliant with the geodetic EIGEN-6C4 gravity data, we define a model normal Earth considering the vertical density distribution at the margins of the model domain, where the masses are not perturbed by the subduction process.</p><p>Model predictions are in good agreement with data, both in terms of wavelengths and magnitude of the gravity anomalies measured in the surroundings of the Sumatra and Marina subductions. Furthermore, our modeling supports that the differences in the style of the gravity anomaly observed in the two areas are attributable to the different environments – ocean-ocean or ocean-continental subduction – that drives a significantly different dynamic in the wedge area.</p>


2020 ◽  
Vol 55 (3) ◽  
pp. 100-117
Author(s):  
Viktor Szabó ◽  
Dorota Marjańska

AbstractGlobal satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.


Sign in / Sign up

Export Citation Format

Share Document