hydrostatic equilibrium
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 48)

H-INDEX

30
(FIVE YEARS 5)

2021 ◽  
Vol 922 (2) ◽  
pp. 149
Author(s):  
Debabrata Deb ◽  
Banibrata Mukhopadhyay ◽  
Fridolin Weber

Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1123-1132
Author(s):  
Júlio C. Fabris ◽  
Túlio Ottoni ◽  
Júnior D. Toniato ◽  
Hermano Velten

A Newtonian-like theory inspired by the Brans–Dicke gravitational Lagrangian has been recently proposed by us. For static configurations, the gravitational coupling acquires an intrinsic spatial dependence within the matter distribution. Therefore, the interior of astrophysical configurations may provide a testable environment for this approach as long as no screening mechanism is evoked. In this work, we focus on the stellar hydrostatic equilibrium structure in such a varying Newtonian gravitational coupling G scenario. A modified Lane–Emden equation is presented and its solutions for various values of the polytropic index are discussed. The role played by the theory parameter ω, the analogue of the Brans–Dicke parameter, in the physical properties of stars is discussed.


2021 ◽  
Vol 922 (2) ◽  
pp. 120
Author(s):  
Ramiz Aktar ◽  
Li Xue ◽  
Tong Liu

Abstract We examine the properties of spiral shocks from a steady, adiabatic, non-axisymmetric accretion disk around a compact star in a binary. We first incorporate all possible influences from a binary through adopting the Roche potential and Coriolis forces in the basic conservation equations. In this paper, we assume spiral shocks to be point-wise and self-similar, and that the flow is in vertical hydrostatic equilibrium to simplify the study. We also investigate mass outflow due to shock compression and apply it to an accreting white dwarf in a binary. We find that our model will be beneficial for overcoming the ad hoc assumption of an optically thick wind generally used in studies of the progenitors of supernovae Ia.


2021 ◽  
pp. 178-188
Author(s):  
Andrew M. Steane

Electromagnetic field theory, and the physics of continuous media (fluids, solids) in curved spacetime are discussed. Generalized Maxwell’s equations are written down and their justifaction is briefly presented. Then we turn to thermodynamics and continuous media. The concept of energy and momentum conservation is carefully expounded, and then the equations for fluid flow (continuity equation and Euler equation) are developed from the divergence of the energy tensor. The Bernoulli equation and the equation for hydrostatic equilibrium are obtained. The chapter then goes on to a general discussion of how general relativity operates and how gravitational phenomena are calculated and observed. The relation between gravity and other aspects of physics such as particle physics is discussed, along with the notion of general covariance.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
R. V. Lobato ◽  
G. A. Carvalho ◽  
C. A. Bertulani

AbstractIn this work, we investigate neutron stars (NS) in $$f(\mathtt {R,L_m})$$ f ( R , L m ) theory of gravity for the case $$f(\mathtt {R,L_m})= \mathtt {R}+ \mathtt {L_m}+ \sigma \mathtt {R}\mathtt {L_m}$$ f ( R , L m ) = R + L m + σ R L m , where $$\mathtt {R}$$ R is the Ricci scalar and $$\mathtt {L_m}$$ L m the Lagrangian matter density. In the term $$\sigma \mathtt {R}\mathtt {L_m}$$ σ R L m , $$\sigma $$ σ represents the coupling between the gravitational and particles fields. For the first time the hydrostatic equilibrium equations in the theory are solved considering realistic equations of state and NS masses and radii obtained are subject to joint constrains from massive pulsars, the gravitational wave event GW170817 and from the PSR J0030+0451 mass-radius from NASA’s Neutron Star Interior Composition Explorer (NICER) data. We show that in this theory of gravity, the mass-radius results can accommodate massive pulsars, while the general theory of relativity can hardly do it. The theory also can explain the observed NS within the radius region constrained by the GW170817 and PSR J0030+0451 observations for masses around $$1.4~M_{\odot }$$ 1.4 M ⊙ .


Author(s):  
Amit Kumar Prasad ◽  
Jitendra Kumar ◽  
Ashok Kumar

AbstractIn this study we have obtained a new exact model for relativistic stellar object by solving Einstein’s field equation with help of Buchdahl metric. The model is capable to represent some known compact stars like Her X-1,4U 1538-52 and SAX J1808.4-3658. The model satisfies the regularity, casuality, stability and energy conditions. Using the Tolman–Oppenheimer–Volkoff equations, we explore the hydrostatic equilibrium for an uncharged case. We have also compared these conditions with graphical representations that provide strong evidences for more realistic and viable models.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Aleksander Kozak ◽  
Aneta Wojnar

AbstractWe present the relativistic hydrostatic equilibrium equations for a wide class of gravitational theories possessing a scalar–tensor representation. It turns out that the stellar structure equations can be written with respect to the scalar–tensor invariants, allowing to interpret their physical role.


Sign in / Sign up

Export Citation Format

Share Document