scholarly journals Influence of structure and pore pressure of plate interface on tectonic tremor in the Nankai subduction zone, Japan

2021 ◽  
Vol 558 ◽  
pp. 116742
Author(s):  
Andri Hendriyana ◽  
Takeshi Tsuji
2014 ◽  
Vol 119 (10) ◽  
pp. 7805-7822 ◽  
Author(s):  
Tsutomu Takahashi ◽  
Koichiro Obana ◽  
Yojiro Yamamoto ◽  
Ayako Nakanishi ◽  
Shuichi Kodaira ◽  
...  

2007 ◽  
Vol 59 (10) ◽  
pp. 1073-1082 ◽  
Author(s):  
Takao Tabei ◽  
Mari Adachi ◽  
Shin’ichi Miyazaki ◽  
Tsuyoshi Watanabe ◽  
Sayomasa Kato

2011 ◽  
Vol 12 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hideki Hamamoto ◽  
Makoto Yamano ◽  
Shusaku Goto ◽  
Masataka Kinoshita ◽  
Keiko Fujino ◽  
...  

Author(s):  
D Legrand ◽  
A Iglesias ◽  
S K Singh ◽  
V Cruz-Atienza ◽  
C Yoon ◽  
...  

Summary The rate of earthquakes with magnitudes Mw ≤ 7.5 in the Ometepec segment of the Mexican subduction zone is relatively high as compared to the neighboring regions of Oaxaca and Guerrero. Although the reason is not well understood, it has been reported that these earthquakes give rise to a large number of aftershocks. Our study of the aftershock sequence of the 2012 Mw7.4 Ometepec thrust earthquake suggests that it is most likely due to two dominant factors: (1) The presence of an anomalously high quantity of over-pressured fluids near the plate interface, and (2) the roughness of the plate interface. More than 5,400 aftershocks were manually detected during the first ten days following the 2012 earthquake. Locations were obtained for 2,419 events (with duration magnitudes Md ≥ 1.5). This is clearly an unusually high number of aftershocks for an earthquake of this magnitude. Furthermore, we generated a more complete catalog, using an unsupervised fingerprint technique, to detect more smaller events (15,593 within one month following the mainshock). For this catalog, a high b-value of 1.50 ± 0.10 suggests the presence of fluid release during the aftershock sequence. A low p-value (0.37 ± 0.12) of the Omori law reveals a slow decaying aftershock sequence. The temporal-distribution of aftershocks shows peaks of activity with two dominant periods of 12h and 24h that correlate with the Earth tides. To explain these observations, we suggest that the 2012 aftershock sequence is associated with the presence of over-pressured fluids and/or a heterogeneous and irregular plate interface related to the subduction of the neighboring seamounts. High fluid content has independently been inferred by magneto-telluric surveys and deduced from heat flow measurements in the region. The presence of fluids in the region has also been proposed to explain the occurrence of slow slip events, low frequency earthquakes, and tectonic tremors.


2011 ◽  
Vol 38 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Akito Tsutsumi ◽  
Olivier Fabbri ◽  
Anne Marie Karpoff ◽  
Kohtaro Ujiie ◽  
Atsushi Tsujimoto

Sign in / Sign up

Export Citation Format

Share Document