Utilizing building foundations as micro-scale compressed air energy storage vessel: Numerical study for mechanical feasibility

2020 ◽  
Vol 28 ◽  
pp. 101225 ◽  
Author(s):  
Junyoung Ko ◽  
Seunghee Kim ◽  
Sihyun Kim ◽  
Hoyoung Seo
Author(s):  
Mohsen Saadat ◽  
Farzad A. Shirazi ◽  
Perry Y. Li

Maintaining the accumulator pressure regardless of its energy level and tracking the power demanded by the electrical grid are two potential advantages of the Compressed Air Energy Storage (CAES) system proposed in [1, 2]. In order to achieve these goals, a nonlinear controller is designed motivated by an energy-based Lyapunov function. The control inputs of the storage system include displacement of the pump/motor in the hydraulic transformer and displacement of the liquid piston air compressor/expander. While the latter has a relatively low bandwidth, the former is a faster actuator with a higher bandwidth. In addition, the pneumatic path of the storage vessel that is connected to the liquid piston air compressor/expander has a high energy density, whereas the hydraulic path of the storage vessel is power dense. The nonlinear controller is then modified to achieve a better performance for the entire system according to these properties. In the proposed approach, the control effort is distributed between the two pump/motors based on their bandwidths: the hydraulic transformer reacts to high frequency events, while the liquid piston air compressor/expander performs a steady storage/regeneration task. As a result, the liquid piston air compressor/expander will loosely maintain the accumulator pressure ratio and the pump/motor in the hydraulic transformer will precisely track the desired generator power. This control scheme also allows the accumulator to function as a damper in the storage system by absorbing power disturbances from the hydraulic path generated by wind gusts.


2020 ◽  
Vol 205 ◽  
pp. 07012
Author(s):  
Jingtao Zhang ◽  
Hoyoung Seo ◽  
Sihyun Kim ◽  
Junyoung Ko ◽  
Seunghee Kim

Compressed air energy storage (CAES) technology has been re-emerging as one of the promising options to address the challenge coming from the intermittency of renewable energy resources. Unlike the large-scale CAES, which is limited by the geologic location, small-and micro-scale CAES that uses a human-made pressure vessel is adaptable for both grid-connected and standalone distributed units equipped with the energy generation capacity. The research team recently suggested a new concept of pipe-pile-based micro-scale CAES (PPMS-CAES) that uses pipe-pile foundations of a building as compressed air storage vessels. To ascertain the mechanical feasibility of the new concept, we conducted lab-scale pile loading tests with a model test pile in both a loose and dense soil chamber that emulates an actual closed-ended pipe pile. The test pile was subjected to a repeated cycle of compressed air charge (to Pmax=10 MPa) and discharge (to Pmin=0.1 MPa) during the experimental study. The displacement at the top of the test pile, with and without a structural loading, in loose and dense sand, was closely monitored during the repetitive air pressurization-and-depressurization. It was observed that the vertical displacement at the pile head under different conditions was accumulated during the extended cycle of air charge and discharge, but the rate of displacement gradually attenuates during the cycle. And, the presence of structural load and density of soil affected the magnitude of the accumulated vertical displacement. From the analysis, it can be concluded that the concept of PPMS-CAES is not likely to compromise the mechanical integrity of pipe piles while showing a promising capacity for energy storage.


Sign in / Sign up

Export Citation Format

Share Document