optimization study
Recently Published Documents


TOTAL DOCUMENTS

1743
(FIVE YEARS 529)

H-INDEX

44
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Rifat Kayumov ◽  
Ahmed Al Shueili ◽  
Musallam Jaboob ◽  
Hussain Al Salmi ◽  
Ricardo Sebastian Trejo ◽  
...  

Abstract Development of the tight gas Khazzan Field in Sultanate of Oman has progressed through an extensive learning curve over many years. Thereby, the hydraulic fracturing design was fine-tuned and optimized to properly fit the requirements of the challenging Barik reservoir in this area. In 2018, BP Oman started developing the Barik reservoir in the Ghazeer Field, which naturally extends the reservoir boundary south of Khazzan Field. However, the Barik reservoir in the Ghazeer area is thicker and more permeable than in the Khazzan Field; therefore, the hydraulic fracturing design required adjustment to be optimized to directly reflect the reservoir needs of the Ghazeer Field. A comprehensive hydraulic fracturing design software was used for this optimization study and sensitivity analysis. This software is a plug-in to a benchmark exploration and production software platform and provides a complete fracturing optimization loop from hydraulic fracturing design sensitivity modelled with a calibrated mechanical earth model to detailed production prediction using the incorporated reservoir simulator. One of the stimulated wells from Ghazeer Field was used as the reference for this study. The reservoir sector model was created and adjusted to match actual data from this well. The data include fracturing treatment execution response, surveillance data such as radioactive tracers, bottomhole pressure gauge, and pressure transient analysis. Reservoir properties were also adjusted to match long-term production data obtained for this reference well. After the reservoir model was fully validated against actual data, multiple completion and fracturing scenarios were simulated to estimate potential production gain and thus find an optimal hydraulic fracturing design for Ghazeer Field. Many valuable outcomes can be concluded from this study. The optimal treatment design was identified. The value of fracture half-length versus conductivity was clarified for this area. The comparison between single-stage fracturing versus multistage treatment across the thick laminated Barik reservoir in a conventional vertical well was derived. The drainage of different layers with variable reservoir properties was compared for a range of different scenarios.


2022 ◽  
Vol 9 ◽  
Author(s):  
Mohamed H. Mohamed ◽  
Faris Alqurashi ◽  
Dominique Thévenin

In this study, the performance of a new wind turbine design derived from a conventional Savonius turbine is optimized by numerical simulation. The new design consists of three blades without passage between them (closed center). The coupling between the CFD codes (ANSYS Fluent) and the optimizer (OPAL) is used through an automatic procedure in-house codes, as documented, for example, in Thévenin et al.’s Optimization and Computational Fluid Dynamics (2008). A single-objective function (output power coefficient, Cp) is considered as the target of the optimization technique and the shape of the blade as an optimization parameter and relies on evolutionary algorithms. An optimal solution can emerge from this optimization study. By comparison between regular design (semi-cylindrical shape blades) and the optimal configuration, a considerable improvement (up to 7.13% at λ = 0.7) of the optimal configuration performance can be obtained in this manner.


2022 ◽  
Vol 190 ◽  
pp. 109804
Author(s):  
Akbar Aliasgharzadeh ◽  
Vahid Anaraki ◽  
Daryoush Khoramian ◽  
Mahdi Ghorbani ◽  
Bagher Farhood

Author(s):  
Alicia Mollo ◽  
Alexandra Sixto ◽  
Florencia Cora Jofre ◽  
Mariela Pistón ◽  
Marianela Savio

A hydride generation nitrogen microwave induced plasma optical emission spectrometry (HG – MIP OES) system was developed for lead determination. Plumbane chemical generation was performed using 0.045 mol L-1 K3Fe(CN)6...


Sign in / Sign up

Export Citation Format

Share Document