Numerical study of a positive latent cold storage system for industrial applications: Discharge mode

2021 ◽  
Vol 40 ◽  
pp. 102824
Author(s):  
Y. Khattari ◽  
E.H. Sebbar ◽  
Y. Chaibi ◽  
T.El. Rhafiki ◽  
T. Kousksou ◽  
...  
2017 ◽  
Vol 139 ◽  
pp. 16-22 ◽  
Author(s):  
Laila Khatra ◽  
Hamid El Qarnia ◽  
Mohammed El Ganaoui

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 70
Author(s):  
Xudong An ◽  
Lin Jiang ◽  
Fatemeh Hassanipour

In many industrial applications, a permeable mesh (porous screen) is used to control the unsteady (most commonly vortex) flows. Vortex flows are known to display intriguing behavior while propagating through porous screens. This numerical study aims to investigate the effects of physical properties such as porosity, Reynolds number, inlet flow dimension, and distance to the screen on the flow behavior. The simulation model includes a piston-cylinder vortex ring generator and a permeable mesh constructed by evenly arranged rods. Two methods of user-defined function and moving mesh have been applied to model the vortex ring generation. The results show the formation, evolution, and characteristics of the vortical rings under various conditions. The results for vorticity contours and the kinetic energy dissipation indicate that the physical properties alter the flow behavior in various ways while propagating through the porous screens. The numerical model, cross-validated with the experimental results, provides a better understanding of the fluid–solid interactions of vortex flows and porous screens.


2017 ◽  
Vol 127 ◽  
pp. 1564-1573 ◽  
Author(s):  
Kai Zhang ◽  
Dongliang Zhao ◽  
Yao Zhai ◽  
Xiaobo Yin ◽  
Ronggui Yang ◽  
...  

2021 ◽  
Vol 321 ◽  
pp. 04007
Author(s):  
Abdelkader Boutra ◽  
Seddik Kherroubi ◽  
Abderrahmane Bourada ◽  
Youb Khaled Benkahla ◽  
Nabila Labsi ◽  
...  

Flow and heat transfer analysis in ventilated cavities is one of the most widely studied problems in thermo-fluids area. Two-dimensional mixed convection in a ventilated rectangular cavity with baffles is studied numerically and the fluid considered in this study is hot air (Pr = 0.71). The horizontal walls are maintained at a constant temperature, higher than that imposed on the vertical ones. Two very thin heat-conducting baffles are inserted inside the enclosure, on its horizontal walls, to control the flow of convective fluid. The governing equations are discretized using the finite volume method and the SIMPLER algorithm to treat the coupling velocity–pressure. Line by line method is used to solve iteratively the algebraic equations. The effect of the Richardson number Ri (0.01- 100) and the location of the baffles within the cavity on the isothermal lines, streamlines distributions and the average Nusselt number (Nu) has been investigated. The result shows that the location opposite the baffles, close to the fluid outlet, is the optimal choice to be considered for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document