Thermo-economic analysis of geothermal heat pump system integrated with multi-modular water-phase change material tanks for underground space cooling applications

2022 ◽  
Vol 45 ◽  
pp. 103726
Author(s):  
Chao Zeng ◽  
Yanping Yuan ◽  
Fariborz Haghighat ◽  
Karthik Panchabikesan ◽  
Xiaoling Cao ◽  
...  
2009 ◽  
Vol 60 (9-10) ◽  
pp. 503-509 ◽  
Author(s):  
Norio Tenma ◽  
Kasumi Yasukawa ◽  
Isao Takashima ◽  
Youhei Uchida ◽  
Oranuj Lorphensri ◽  
...  

2020 ◽  
Vol 133 ◽  
pp. 110282 ◽  
Author(s):  
Pooya Farzanehkhameneh ◽  
M. Soltani ◽  
Farshad Moradi Kashkooli ◽  
Masoud Ziabasharhagh

2005 ◽  
Vol 128 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Onder Ozgener ◽  
Arif Hepbasli

The main objective in doing the present study is twofold, namely (i) to review briefly the utilization of geothermally heated greenhouses and geothermal heat pumps in Turkey, since the system studied utilizes both renewable energy resources and (ii) to present the Analytical Hierarchy Process (AHP) as a potential decision making method for use in a greenhouse integrated solar assisted geothermal heat pump system (GISAGHPS), which was installed in the Solar Energy Institute of Ege University, Izmir, Turkey. This investigation may also be regarded as the one of the limited studies on the application of the AHP method to GISAGHPs, as no studies on the GISAGHPS have appeared in the literature. In this context, an economic analysis is performed based on the life cycle costing technique first. The results are then evaluated by applying the AHP method to a study, which is a comparative study on the GISAGHPS and split system. The results indicated that the GISAGHPS is economically preferable to the conventional split heating/cooling system under Turkey’s conditions.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4850
Author(s):  
Hyeongjin Moon ◽  
Jae-Young Jeon ◽  
Yujin Nam

The building sector is an energy-consuming sector, and the development of zero-energy buildings (ZEBs) is necessary to address this. A ZEB’s active components include a system that utilizes renewable energy. There is a heat-pump system using geothermal energy. The system is available regardless of weather conditions and time, and it has attracted attention as a high-performance energy system due to its stability and efficiency. However, initial investment costs are higher than other renewable energy sources. To solve this problem, design optimization for the capacity of geothermal heat-pump systems should be performed. In this study, a capacity optimization design of a geothermal heat-pump system was carried out according to building load pattern, and emphasis was placed on cost aspects. Building load patterns were modeled into hospitals, schools, and apartments, and, as a result of optimization, the total cost over 20 years in all building load patterns was reduced.


Sign in / Sign up

Export Citation Format

Share Document