Applying hybrid case-based reasoning in agent-based negotiations for supply chain management

2010 ◽  
Vol 37 (12) ◽  
pp. 8322-8332 ◽  
Author(s):  
Fang Fang ◽  
T.N. Wong
2015 ◽  
Vol 8 (2/3) ◽  
pp. 180-205 ◽  
Author(s):  
Alireza Jahani ◽  
Masrah Azrifah Azmi Murad ◽  
Md. Nasir bin Sulaiman ◽  
Mohd. Hasan Selamat

Purpose – The purpose of this paper is to propose an approach that integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning. Unsatisfied customers, information overload and high uncertainty are the main challenges that are faced by today’s supply chains. In addition, a few existing agent-based approaches are tied to real-world supply chain functions like supplier selection. These approaches are static and do not adequately take the qualitative and quantitative factors into consideration. Therefore, an agent-based framework is needed to address these issues. Design/methodology/approach – The proposed approach integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning, as a common framework. These perspectives were rarely used together as a common framework in previous studies. Furthermore, an exploratory case study in an office furniture company is undertaken to illustrate the value of the framework. Findings – The proposed agent-based framework evaluates supply offers based on customers’ preferences, recommends alternative products in the case of stock-out and provides a collaborative environment among agents who represent different supply chain entities. The proposed fuzzy case-based reasoning (F-CBR) approach reduces the information overload by organizing them into the relevant cases that causes less overall search between cases. In addition, its fuzzy aspect addresses the high uncertainty of supply chains, especially when there are different customers’ orders with different preferences. Research limitations/implications – The present study does not include the functions of inventory management and negotiation between agents. Furthermore, only the case description and case retrieval phases of the case-based reasoning approach are investigated, and the remaining phases like case retaining, case reusing and case revising are not included in the scope of this paper. Originality/value – This framework balances the interests of different supply chain structural elements where each of them is represented by a specific agent for better collaboration, decision-making and problem-solving in a multi-agent environment. In addition, the supplier selection and order gathering mechanisms are developed based on customers’ orders.


2008 ◽  
pp. 2598-2617
Author(s):  
Jianxin Jiao ◽  
Xiao You ◽  
Arun Kumar

This chapter applies the multi-agent system paradigm to collaborative negotiation in a global manufacturing supply chain network. Multi-agent computational environments are suitable for dealing with a broad class of coordination and negotiation issues involving multiple autonomous or semi-autonomous problem-solving agents. An agent-based multi-contract negotiation system is proposed for global manufacturingsupply chain coordination. Also reported is a case study of mobile phone global manufacturing supply chain management.


2011 ◽  
pp. 887-907
Author(s):  
Golenur Begum Huq ◽  
Robyn Lawson

This chapter explores the utilization of a multiagent system in the field of supply chain management for electronic business. It investigates the coordination and cooperation processes, and proposes and discusses a newly developed model for an enhanced and effective cooperation process for e-business. The contribution made by this research provides a theoretical solution and model for agents that adopt the enhanced strategy for e-business. Both large organizations and SMEs will benefit by increasing and expanding their businesses globally, and by participating and sharing with business partners to achieve common goals. As a consequence, the organizations involved will each earn more profit.


Author(s):  
Jianxin Jiao ◽  
Xiao You ◽  
Arun Kumar

This chapter applies the multi-agent system paradigm to collaborative negotiation in a global manufacturing supply chain network. Multi-agent computational environments are suitable for dealing with a broad class of coordination and negotiation issues involving multiple autonomous or semi-autonomous problem-solving agents. An agent-based multi-contract negotiation system is proposed for global manufacturingsupply chain coordination. Also reported is a case study of mobile phone global manufacturing supply chain management.


Sign in / Sign up

Export Citation Format

Share Document