An adaptive network based fuzzy inference system–genetic algorithm clustering ensemble algorithm for performance assessment and improvement of conventional power plants

2011 ◽  
Vol 38 (3) ◽  
pp. 2224-2234 ◽  
Author(s):  
A. Azadeh ◽  
M. Saberi ◽  
M. Anvari ◽  
A. Azaron ◽  
M. Mohammadi
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Sunny Katyara ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Shaikh ◽  
Zahid Hussain Khand ◽  
Lukasz Staszewski ◽  
...  

With the rising load demand and power losses, the equipment in the utility network often operates close to its marginal limits, creating a dire need for the installation of new Distributed Generators (DGs). Their proper placement is one of the prerequisites for fully achieving the benefits; otherwise, this may result in the worsening of their performance. This could even lead to further deterioration if an effective Energy Management System (EMS) is not installed. Firstly, addressing these issues, this research exploits a Genetic Algorithm (GA) for the proper placement of new DGs in a distribution system. This approach is based on the system losses, voltage profiles, and phase angle jump variations. Secondly, the energy management models are designed using a fuzzy inference system. The models are then analyzed under heavy loading and fault conditions. This research is conducted on a six bus radial test system in a simulated environment together with a real-time Power Hardware-In-the-Loop (PHIL) setup. It is concluded that the optimal placement of a 3.33 MVA synchronous DG is near the load center, and the robustness of the proposed EMS is proven by mitigating the distinct contingencies within the approximately 2.5 cycles of the operating period.


2021 ◽  
pp. 004051752110205
Author(s):  
Xueqing Zhao ◽  
Ke Fan ◽  
Xin Shi ◽  
Kaixuan Liu

Virtual reality is a technology that allows users to completely interact with a computer-simulated environment, and put on new clothes to check the effect without taking off their clothes. In this paper, a virtual fit evaluation of pants using the Adaptive Network Fuzzy Inference System (ANFIS), VFE-ANFIS for short, is proposed. There are two stages of the VFE-ANFIS: training and evaluation. In the first stage, we trained some key pressure parameters by using the VFE-ANFIS; these key pressure parameters were collected from real try-on and virtual try-on of pants by users. In the second stage, we evaluated the fit by using the trained VFE-ANFIS, in which some key pressure parameters of pants from a new user were determined and we output the evaluation results, fit or unfit. In addition, considering the small number of input samples, we used the 10-fold cross-validation method to divide the data set into a training set and a testing set; the test accuracy of the VFE-ANFIS was 94.69% ± 2.4%, and the experimental results show that our proposed VFE-ANFIS could be applied to the virtual fit evaluation of pants.


Sign in / Sign up

Export Citation Format

Share Document