Parallelized genetic ant colony systems for solving the traveling salesman problem

2011 ◽  
Vol 38 (4) ◽  
pp. 3873-3883 ◽  
Author(s):  
Shyi-Ming Chen ◽  
Chih-Yao Chien
2013 ◽  
Vol 765-767 ◽  
pp. 699-702
Author(s):  
Tian Yuan Zhou

Based on the ant colony algorithm analysis and research, this paper proposed an improved ant colony algorithm. Through updating pheromone and optimal search strategy, then applied to the Traveling Salesman Problem (TSP), effectively improved the searching capability of the algorithm. Finally through the simulation testing and analysis, verified that the improved ant colony algorithm is effective, and has good performance.


2014 ◽  
Vol 4 (4(70)) ◽  
pp. 18
Author(s):  
Ігор Андрійович Могила ◽  
Ірина Іванівна Лобач ◽  
Оксана Андріївна Якимець

Author(s):  
Shu-Chuan Chu ◽  
Jeng-Shyang Pan

Processes that simulate natural phenomena have successfully been applied to a number of problems for which no simple mathematical solution is known or is practicable. Such meta-heuristic algorithms include genetic algorithms, particle swarm optimization and ant colony systems and have received increasing attention in recent years. This work parallelizes the ant colony systems and introduces the communication strategies so as to reduce the computation time and reach the better solution for traveling salesman problem. We also extend ant colony systems and discuss a novel data clustering process using Constrained Ant Colony Optimization (CACO). The CACO algorithm extends the ant colony optimization algorithm by accommodating a quadratic distance metric, the Sum of K Nearest Neighbor Distances (SKNND) metric, constrained addition of pheromone and a shrinking range strategy to improve data clustering. We show that the CACO algorithm can resolve the problems of clusters with arbitrary shapes, clusters with outliers and bridges between clusters


Sign in / Sign up

Export Citation Format

Share Document