scholarly journals An adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov–Smirnov two-sample test

2015 ◽  
Vol 42 (8) ◽  
pp. 4016-4021 ◽  
Author(s):  
Llanos Mora-López ◽  
Juan Mora
2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Lajos Molnár ◽  
Patrícia Szokol

AbstractIn this paper we describe the structure of surjective isometries of the space of all generalized probability distribution functions on ℝ with respect to the Kolmogorov-Smirnov metric.


1997 ◽  
Vol 78 (10) ◽  
pp. 1904-1907 ◽  
Author(s):  
Weinan E ◽  
Konstantin Khanin ◽  
Alexandre Mazel ◽  
Yakov Sinai

2021 ◽  
Author(s):  
Hamed Farhadi ◽  
Manousos Valyrakis

<p>Applying an instrumented particle [1-3], the probability density functions of kinetic energy of a coarse particle (at different solid densities) mobilised over a range of above threshold flow conditions conditions corresponding to the intermittent transport regime, were explored. The experiments were conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 800 (length) × 90 (width) cm dimension. Twelve different flow conditions corresponding to intermittent transport regime for the range of particle densities examined herein, have been implemented in this research. Ensuring fully developed flow conditions, the start of the test section was located at 3.2 meters upstream of the flume outlet. The bed surface of the flume is flat and made up of well-packed glass beads of 16.2 mm diameter, offering a uniform roughness over which the instrumented particle is transported. MEMS sensors are embedded within the instrumented particle with 3-axis gyroscope and 3-axis accelerometer. At the beginning of each experimental run, instrumented particle is placed at the upstream of the test section, fully exposed to the free stream flow. Its motion is recorded with top and side cameras to enable a deeper understanding of particle transport processes. Using results from sets of instrumented particle transport experiments with varying flow rates and particle densities, the probability distribution functions (PDFs) of the instrumented particles kinetic energy, were generated. The best-fitted PDFs were selected by applying the Kolmogorov-Smirnov test and the results were discussed considering the light of the recent literature of the particle velocity distributions.</p><p>[1] Valyrakis, M.; Alexakis, A. Development of a “smart-pebble” for tracking sediment transport. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2016), St. Louis, MO, USA, 12–15 July 2016.</p><p>[2] Al-Obaidi, K., Xu, Y. & Valyrakis, M. 2020, The Design and Calibration of Instrumented Particles for Assessing Water Infrastructure Hazards, Journal of Sensors and Actuator Networks, vol. 9, no. 3, 36.</p><p>[3] Al-Obaidi, K. & Valyrakis, M. 2020, Asensory instrumented particle for environmental monitoring applications: development and calibration, IEEE sensors journal (accepted).</p>


Author(s):  
D. Xue ◽  
S. Y. Cheing ◽  
P. Gu

This research introduces a new systematic approach to identify the optimal design configuration and attributes to minimize the potential construction project changes. The second part of this paper focuses on the attribute design aspect. In this research, the potential changes of design attribute values are modeled by probability distribution functions. Attribute values of the design whose construction tasks are least sensitive to the changes of these attribute values are identified based upon Taguchi Method. In addition, estimation of the potential project change cost due to the potential design attribute value changes is also discussed. Case studies in pipeline engineering design and construction have been conducted to show the effectiveness of the introduced approach.


Sign in / Sign up

Export Citation Format

Share Document