polymer chains
Recently Published Documents


TOTAL DOCUMENTS

3181
(FIVE YEARS 569)

H-INDEX

97
(FIVE YEARS 14)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Marcelo A. Guancha-Chalapud ◽  
Liliana Serna-Cock ◽  
Diego F. Tirado

Colombia is the world’s largest producer of fique fibers (Furcraea bedinghausii), with a net production of 30,000 tons per year. This work proposes to revalue waste from the Colombian fique agroindustry. For this purpose, cellulose nanofibers were obtained from fique and used as reinforcement material to create acrylic superabsorbent hydrogels. Unreinforced acrylic hydrogels (AHR0) and acrylic hydrogels reinforced with fique nanofibers at 3% w/w (AHR3), 5% w/w (AHR5), and 10 % w/w (AHR10) were synthesized using the solution polymerization method. The best hydrogel formulation for agricultural purposes was chosen by comparing their swelling behavior, mechanical properties, and using scanning electron microscopy (SEM). By raising the nanofiber concentration to 3% (AHR3), the best-chosen formulation, the interaction between the nanofibers and the polymer matrix increased, which favored the network stability. However, beyond AHR3, there was a higher viscosity of the reactive system, which caused a reduction in the mobility of the polymer chains, thus disfavoring the swelling capacity. The reinforced hydrogel proposed in this study (AHR3) could represent a contribution to overcoming the problems of land dryness present in Colombia, an issue that will worsen in the coming years due to the climate emergency.


2022 ◽  
Vol 13 ◽  
pp. 63-73
Author(s):  
Robin Vacher ◽  
Astrid S de Wijn

Friction and wear of polymers at the nanoscale is a challenging problem due to the complex viscoelastic properties and structure. Using molecular dynamics simulations, we investigate how a graphene sheet on top of the semicrystalline polymer polyvinyl alcohol affects the friction and wear. Our setup is meant to resemble an AFM experiment with a silicon tip. We have used two different graphene sheets, namely an unstrained, flat sheet, and one that has been crumpled before being deposited on the polymer. The graphene protects the top layer of the polymer from wear and reduces the friction. The unstrained flat graphene is stiffer, and we find that it constrains the polymer chains and reduces the indentation depth.


Author(s):  
Philip Smith ◽  
Eleni Panagiotou

Abstract Biopolymers, like chromatin, are often confined in small volumes. Confinement has a great effect on polymer conformations, including polymer entanglement. Polymer chains and other filamentous structures can be represented by polygonal curves in 3-space. In this manuscript, we examine the topological complexity of polygonal chains in 3-space and in confinement as a function of their length. We model polygonal chains by equilateral random walks in 3-space and by uniform random walks in confinement. For the topological characterization, we use the second Vassiliev measure. This is an integer topological invariant for polygons and a continuous functions over the real numbers, as a function of the chain coordinates for open polygonal chains. For uniform random walks in confined space, we prove that the average value of the Vassiliev measure in the space of configurations increases as $O(n^2)$ with the length of the walks or polygons. We verify this result numerically and our numerical results also show that the mean value of the second Vassiliev measure of equilateral random walks in 3-space increases as $O(n)$. These results reveal the rate at which knotting of open curves and not simply entanglement are affected by confinement.


2022 ◽  
Author(s):  
Qingyu Wang ◽  
Shuaibing Yu ◽  
Lianshun Zhang ◽  
Lei Wang ◽  
Jinming Kong ◽  
...  

An electrochemiluminescence approach based on surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) was developed for miRNA-21 detection for the first time. The SI-RAFT polymerization generates polymer chains with functional groups that...


Soft Matter ◽  
2022 ◽  
Author(s):  
Jian-Chun Wu ◽  
Fu-jun Lin ◽  
Bao-Quan Ai

We investigate the transport of active polymer chains in steady laminar flows in the presence of thermal noise and an external constant force. In the model, the polymer chain is...


2021 ◽  
Vol 3 (4) ◽  
pp. 270-278
Author(s):  
Andrei Moldavanov

Stages of natural evolution such as biogenesis and abiogenesis are the well-recognized terms to characterize the very different phases of life development. Traditionally, an abiogenesis is believed as the early stage of evolution that is mainly the chemistry phase dealing with intercoupling between the complex polymer chains when manifestations of life assumes substantial participation of cooperative effects. It its turn, a biogenesis as the subsequent stage of evolution is the period for prevalence of Darwin’s laws showing, in particular, in battle among separate species in the way of variability-heredity contest. In this article, we discuss possible nature of the transition between above stages as a normal result of progress in an evolutionary system simulated by mathematical model of open system with infinite number of conserved links with system surroundings. It is shown that the biosystem, in transition point experiences the deep reconstruction in existing pattern of energy exchange which leads to emergence of the more complicated and advanced stage of evolution. Our study showed that the found transition point can be considered as a singularity point in system evolution. In its turn, the evolution stages with the dissimilar meaning are the physical placeholders for stage of abiogenesis and biogenesis in natural evolution, correspondingly.


Author(s):  
Devendra K Sahu ◽  
Keshav Dev ◽  
Vikram S Yadav

Thermally stimulated depolarisation current (TSDC) of polarised samples of methyl acrylic acid (MAA) doped ethyl cellulose (EC) films of about 25 µm thickness has been recorded as a function of temperature, electric field, heating rates and storage times. Two current maxima in positive direction and found around 60 and 110oC for doped sample with ethyl cellulose. FTIR of doped EC are represented the different phenomena of TSDC. Thermal sampling technique showed that the relaxation is distributed. Differentia thermal analysis gave a second-order transition at bout 345K because of good correlation between both thermal techniques it is concluded that the TSD peak is associated with glass transition of the polymer, and therefore it involves the motion of large parts of the polymer chains.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Abdullah M. Asiri ◽  
Francesco Petrosino ◽  
Valerio Pugliese ◽  
Sher Bahadar Khan ◽  
Khalid Ahmad Alamry ◽  
...  

The casting and preparation of ultrafiltration ZnO modified cellulose acetate membrane (CA/ZnO) were investigated in this work. CA membranes were fabricated by phase inversion using dimethylformamide (DMF) as a solvent and ZnO as nanostructures materials. Ultrafiltration (UF) performance, mechanical stability, morphology, contact angle, and porosity were evaluated on both CA- and ZnO-modified CA samples. Scanning electron microscopy (SEM) was used to determine the morphology of the membranes, showing different pore sizes either on rough surfaces and cross-sections of the samples, an asymmetric structure and ultra-scale pores with an average pore radius 0.0261 to 0.045 µm. Contact angle measurements showed the highest hydrophobicity values for the samples with no ZnO addition, ranging between 48° and 82.7° on their airside. The permeability values decreased with the increasing CA concentration in the casting solution, as expected; however, ZnO-modified membranes produced lower flux than the pure CA ones. Nevertheless, ZnO modified CA membranes have higher surface pore size, pore density and porosity, and improved surface hydrophilicity compared with pure CA membranes. The results indicated that the incorporated nano-ZnO tends to limit the packing of the polymer chains onto the membrane structure while showing antifouling properties leading to better hydrophilicity and permeation with consistent UF applications.


Author(s):  
Chaoqian Luo ◽  
Christopher Chung ◽  
Christopher M. Yakacki ◽  
Kevin Long ◽  
Kai Yu

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4466
Author(s):  
Dirk Grommes ◽  
Martin Schenk ◽  
Olaf Bruch ◽  
Dirk Reith

In this study, we investigate the thermo-mechanical relaxation and crystallization behavior of polyethylene using mesoscale molecular dynamics simulations. Our models specifically mimic constraints that occur in real-life polymer processing: After strong uniaxial stretching of the melt, we quench and release the polymer chains at different loading conditions. These conditions allow for free or hindered shrinkage, respectively. We present the shrinkage and swelling behavior as well as the crystallization kinetics over up to 600 ns simulation time. We are able to precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influences crystallization and relaxation behavior. From our models, we determine the temperature dependent crystallization rate of polyethylene, including crystallization onset temperature.


Sign in / Sign up

Export Citation Format

Share Document