Modeling human-like decision-making for inbound smart ships based on fuzzy decision trees

2019 ◽  
Vol 115 ◽  
pp. 172-188 ◽  
Author(s):  
Jie Xue ◽  
Chaozhong Wu ◽  
Zhijun Chen ◽  
P.H.A.J.M. Van Gelder ◽  
Xinping Yan
Author(s):  
Malcolm J. Beynonm

The seminal work of Zadeh (1965), namely fuzzy set theory (FST), has developed into a methodology fundamental to analysis that incorporates vagueness and ambiguity. With respect to the area of data mining, it endeavours to find potentially meaningful patterns from data (Hu & Tzeng, 2003). This includes the construction of if-then decision rule systems, which attempt a level of inherent interpretability to the antecedents and consequents identified for object classification (See Breiman, 2001). Within a fuzzy environment this is extended to allow a linguistic facet to the possible interpretation, examples including mining time series data (Chiang, Chow, & Wang, 2000) and multi-objective optimisation (Ishibuchi & Yamamoto, 2004). One approach to if-then rule construction has been through the use of decision trees (Quinlan, 1986), where the path down a branch of a decision tree (through a series of nodes), is associated with a single if-then rule. A key characteristic of the traditional decision tree analysis is that the antecedents described in the nodes are crisp, where this restriction is mitigated when operating in a fuzzy environment (Crockett, Bandar, Mclean, & O’Shea, 2006). This chapter investigates the use of fuzzy decision trees as an effective tool for data mining. Pertinent to data mining and decision making, Mitra, Konwar and Pal (2002) succinctly describe a most important feature of decision trees, crisp and fuzzy, which is their capability to break down a complex decision-making process into a collection of simpler decisions and thereby, providing an easily interpretable solution.


Author(s):  
P Barach ◽  
V Levashenko ◽  
E Zaitseva

Fuzzy decision trees represent classification knowledge more naturally to the way of human thinking and are more robust in tolerating imprecise, conflict, and missing information. Decision Making Support Systems are used widely in clinical medicine because decisions play an important role in diagnostic processes. Decision trees are a very suitable candidate for induction of simple decision-making models with the possibility of automatic learning. The goal of this paper is to demonstrate a new approach for predictive data mining models in clinical medicine. This approach is based on induction of fuzzy decision trees. This approach allows us to build decision-making modesl with different properties (ordered, stability etc.). Three new types of fuzzy decision trees (non-ordered, ordered and stable) are considered in the paper. Induction of these fuzzy decision trees is based on cumulative information estimates. Results of experimental investigation are presented. Predictive data mining is becoming an essential instrument for researchers and clinical practitioners in medicine. Using new approaches based on fuzzy decision trees allows to increase the prediction accuracy. Decision trees are a very suitable candidate for induction using simple decision-making models with the possibility of automatic and AI learning.


Author(s):  
Malcolm J. Beynon

The seminal work of Zadeh (1965), fuzzy set theory (FST) has developed into a methodology fundamental to analysis that incorporates vagueness and ambiguity. With respect to the area of data mining, it endeavours to find potentially meaningful patterns from data (Hu & Tzeng, 2003). This includes the construction of if-then decision rule systems, which attempt a level of inherent interpretability to the antecedents and consequents identified for object classification (and prediction), (see Breiman 2001).


2014 ◽  
Vol 6 (4) ◽  
pp. 346 ◽  
Author(s):  
Swathi Jamjala Narayanan ◽  
Rajen B. Bhatt ◽  
Ilango Paramasivam ◽  
M. Khalid ◽  
B.K. Tripathy

Sign in / Sign up

Export Citation Format

Share Document