Finding most informative common ancestor in cross-ontological semantic similarity assessment: An intrinsic information content-based approach

2021 ◽  
pp. 116281
Author(s):  
Abhijit Adhikari ◽  
Biswanath Dutta ◽  
Animesh Dutta
2017 ◽  
Vol 53 (1) ◽  
pp. 248-265 ◽  
Author(s):  
Yuncheng Jiang ◽  
Wen Bai ◽  
Xiaopei Zhang ◽  
Jiaojiao Hu

BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Xiaoshi Zhong ◽  
Rama Kaalia ◽  
Jagath C. Rajapakse

Abstract Background Semantic similarity between Gene Ontology (GO) terms is a fundamental measure for many bioinformatics applications, such as determining functional similarity between genes or proteins. Most previous research exploited information content to estimate the semantic similarity between GO terms; recently some research exploited word embeddings to learn vector representations for GO terms from a large-scale corpus. In this paper, we proposed a novel method, named GO2Vec, that exploits graph embeddings to learn vector representations for GO terms from GO graph. GO2Vec combines the information from both GO graph and GO annotations, and its learned vectors can be applied to a variety of bioinformatics applications, such as calculating functional similarity between proteins and predicting protein-protein interactions. Results We conducted two kinds of experiments to evaluate the quality of GO2Vec: (1) functional similarity between proteins on the Collaborative Evaluation of GO-based Semantic Similarity Measures (CESSM) dataset and (2) prediction of protein-protein interactions on the Yeast and Human datasets from the STRING database. Experimental results demonstrate the effectiveness of GO2Vec over the information content-based measures and the word embedding-based measures. Conclusion Our experimental results demonstrate the effectiveness of using graph embeddings to learn vector representations from undirected GO and GOA graphs. Our results also demonstrate that GO annotations provide useful information for computing the similarity between GO terms and between proteins.


2017 ◽  
Vol 112 ◽  
pp. 564-573 ◽  
Author(s):  
Imen Gabsi ◽  
Hager Kammoun ◽  
Sarra brahmi ◽  
Ikram Amous

2011 ◽  
Vol 09 (06) ◽  
pp. 681-695 ◽  
Author(s):  
MARCO A. ALVAREZ ◽  
CHANGHUI YAN

Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.


Sign in / Sign up

Export Citation Format

Share Document