A wave number based approach for the evaluation of the Green's function of a one-dimensional railway track model

2019 ◽  
Vol 78 ◽  
pp. 103854
Author(s):  
Aditi Kumawat ◽  
Prishati Raychowdhury ◽  
Sarvesh Chandra
2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


2012 ◽  
Vol 28 (1) ◽  
pp. 143-151 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi ◽  
J. Y. Tian

ABSTRACTComplex method and Green's function method are used here to investigate the dynamic analysis for circular inclusion near interfacial crack impacted by SH-wave in bi-material half-space. Firstly, the displacement expression of the scattering wave was constructed which satisfied the free boundary conditions, then Green's function could be constructed, which was an essential solution to the displacement field for an elastic right-angle space with a circular inclusion impacted by out-plane harmonic line source loading at vertical surface. Secondly, crack was made out with “crack-division” technique. Meanwhile, the bi-material media was divided into two parts along the bi-material interface based on the idea of interface “conjunction”, and then the vertical surfaces of the two right-angle spaces were loaded with undetermined anti-plane forces in order to satisfy displacement continuity and stress continuity conditions at linking section. So a series of algebraic equations for determining the unknown forces could be set up through continuity conditions and the Green's function. Finally, some examples and results for dynamic stress concentration factor of the circular elastic inclusion were given. Numerical results show that they are influenced by interfacial crack, the incident wave number and the free boundary in some degree.


Wave Motion ◽  
2019 ◽  
Vol 89 ◽  
pp. 232-244
Author(s):  
Georgia M. Lynott ◽  
Victoria Andrew ◽  
I. David Abrahams ◽  
Michael J. Simon ◽  
William J. Parnell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document