SH Wave Number Green’s Function for a Layered, Elastic Half-Space. Part I: Theory and Dynamic Canyon Response by the Discrete Wave Number Boundary Element Method

2014 ◽  
Vol 171 (9) ◽  
pp. 2185-2198 ◽  
Author(s):  
Doriam Restrepo ◽  
Juan David Gómez ◽  
Juan Diego Jaramillo
2012 ◽  
Vol 28 (1) ◽  
pp. 143-151 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi ◽  
J. Y. Tian

ABSTRACTComplex method and Green's function method are used here to investigate the dynamic analysis for circular inclusion near interfacial crack impacted by SH-wave in bi-material half-space. Firstly, the displacement expression of the scattering wave was constructed which satisfied the free boundary conditions, then Green's function could be constructed, which was an essential solution to the displacement field for an elastic right-angle space with a circular inclusion impacted by out-plane harmonic line source loading at vertical surface. Secondly, crack was made out with “crack-division” technique. Meanwhile, the bi-material media was divided into two parts along the bi-material interface based on the idea of interface “conjunction”, and then the vertical surfaces of the two right-angle spaces were loaded with undetermined anti-plane forces in order to satisfy displacement continuity and stress continuity conditions at linking section. So a series of algebraic equations for determining the unknown forces could be set up through continuity conditions and the Green's function. Finally, some examples and results for dynamic stress concentration factor of the circular elastic inclusion were given. Numerical results show that they are influenced by interfacial crack, the incident wave number and the free boundary in some degree.


Author(s):  
Qiang Li ◽  
Roman Pohrt ◽  
Iakov A Lyashenko ◽  
Valentin L Popov

We present a new formulation of the boundary element method for simulating the nonadhesive and adhesive contact between an indenter of arbitrary shape and an elastic half-space coated with an elastic layer of different material. We use the Fast Fourier Transform-based formulation of boundary element method, while the fundamental solution is determined directly in the Fourier space. Numerical tests are validated by comparison with available asymptotic analytical solutions for axisymmetric flat and spherical indenter shapes.


Sign in / Sign up

Export Citation Format

Share Document